Advertisement

Mettre les structures en mouvement: La phénoménologie et la dynamique de l'intuition conceptuelle. Sur la pertinence phénoménologique de la théorie des catégories

  • Jocelyn Benoist
Part of the Phaenomenologica book series (PHAE, volume 182)

Keywords

Cette Position Nous Pensons Mathesis Universalis Nous Voyons Correspondance Entre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. J. Benoist: Phénoménologie, sémantique, ontologie: Husserl et le tradition logique autrichienne, Paris, PUF, 1997 (ch. IV).Google Scholar
  2. J. Benoist: L’a priori conceptuel: Bolzano, Husserl, Schlick, Paris, Vrin, 1999.Google Scholar
  3. J. Benoist: “Husserl et Frege sur le concept”, in Robert Brisart (éd.), Husserl et Frege. Les ambiguïtés de l’antipsychologisme, Paris, Vrin, 2002, pp. 203–224.Google Scholar
  4. S. Eilenberg et S. Mac Lane: «General Theory of Natural Equivalences», Transactions of the American Mathematical Society, 58, 1945, pp. 231–294.CrossRefGoogle Scholar
  5. R. Goldblatt: Topoi. The Categorial Analysis of Logic, Amsterdam, North-Holland Publishing, 1984.Google Scholar
  6. Husserl, Edmund: Philosophie der Arithmetik, hg. v. Lothar Eley, La Haye, Nijhoff, 1970 (Husserliana XII).Google Scholar
  7. Husserl, Edmund: Formale und Transzendentale Logik, hg. v. Paul Janssen, La Haye, Nijhoff, 1974 (Husserliana XVII).Google Scholar
  8. Husserl, Edmund: Logische Untersuchungen, Erster Band. Prolegomena zur reinen Logik, hg. v. Elmar Holenstein, La Haye, Nijhoff, 1975 (Husserliana XVIII).Google Scholar
  9. Husserl, Edmund: Studien zur Arithmetik und Geometrie (1886–1901), hg. v. Ingeborg Strohmeyer, La Haye, Nijhoff, 1983 (Husserliana XXI).Google Scholar
  10. Husserl, Edmund: Logische Untersuchungen, Zweiter und dritter Band. Untersuchungen zur Phänomenologie und Theorie der Erkenntnis, hg. v. Ursula Panzer, La Haye, Nijhoff, 1984 (Husserliana XIX/1 et /2).Google Scholar
  11. S. Mac Lane: Categories for the Working Mathematician, 2nd. éd., New York, Springer, 1998.Google Scholar
  12. F. Patras: La pensée mathématique contemporaine, Paris, PUF, 2001.Google Scholar
  13. F. William Lawvere et Stephen H. Schanuel. Conceptual Mathematics. A First Introduction to Categories, Cambridge, Cambridge University Press, 1997.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Jocelyn Benoist

There are no affiliations available

Personalised recommendations