Asteroid impact in the black sea; a black scenario

  • Roelof Dirk Schuiling
  • Richard B. Cathcart
  • Viorel Badescu
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 242)

Abstract

Discussions of the consequences of an impact of an extraterrestrial body in a particular region often focus only on very large asteroids, neglecting many phenomena attributable to small asteroid impacts. For impacts at sea it is normally the beach run up of impact-generated waves, which attracts most interest. Here, however, the vulnerability of the Black Sea region (comprised of Romania, Ukraine, Russia, Georgia, Turkey, and Bulgaria) will be examined, if it becomes subject to toxic and flammable gases that may someday be emitted by a catastrophically overturned Black Sea as a consequence of the impact of a medium-sized asteroid.

Keywords

Black Sea asteroid impact overturn hydrogen sulfide immobilization of metals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    inzel, R. P. (2000) The Torino Impact Hazard Scale, Planetary and Space, Science 48, 297-303.Google Scholar
  2. 2.
    oveda, A. et al. (1999) The expected frequency of collisions of small meteorites with cars and aircraft, Planetary and Space Science 47, 715-719.CrossRefADSGoogle Scholar
  3. 3.
    emo, J. L. (1998) An approach to assessing the technological cost/benefits of criti- cal and sub-critical cosmic impact prevention, Journal of the British Interplanetary Society 51, 461–470.Google Scholar
  4. 4.
    scherson, N. (1995) The Black Sea (Hill and Wang, NY), 267-268.Google Scholar
  5. 5.
    otel, A. J. (1999) A trigger mechanism for the Lake Nyos disaster, Journal of Volcanology and Geothermal Research 88, 343-347.CrossRefADSGoogle Scholar
  6. 6.
    perling, M. et al. (2003) Black Sea impact on the formation of eastern Mediterranean sapropel S1. Evidence from the Marmara Sea, Palaeogeography, Palaeoclimatology, Palaeoecology 190, 9CrossRefGoogle Scholar
  7. 7.
    pada, G. et al. (1999) Chandler wobble excitation by catastrophic flooding of the Black Sea, Annali di Geofisica 42, 749-754.Google Scholar
  8. 8.
    umborg, C. et al. (1997) Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure, Nature 386, 385-388.CrossRefADSGoogle Scholar
  9. 9.
    ascom, W. (1971) Deep-water archeology, Science 174, 61-269.CrossRefGoogle Scholar
  10. 10.
    kimoto, H. (2003) Global air quality and pollution, Science 302, 1716-1718.CrossRefADSGoogle Scholar
  11. 11.
    ump, L. R. et al. (2003) Death by hydrogen sulfide: a kill mechanism for the endpermian mass extinction, lecture at: Annual Meting of the Geological Society of America, Seattle, USA.Google Scholar
  12. 12.
    yskin, G. (2003) Methane-driven oceanic eruptions and mass extinctions, Geology 31, 741-744.CrossRefADSGoogle Scholar
  13. 13.
    owler, C. M. R. (1993) The Solid Earth: An Introduction to Global Geophysics, Cambridge UP, NY, 472-480.Google Scholar
  14. 14.
    rett, R. (1992) The Cretaceous-Tertiary extinction: A lethal mechanism involving anhydrite target rocks, Geochimica et Cosmochimica 56, 3603-3606.CrossRefADSGoogle Scholar
  15. 15.
    ope, K. (2002) Impact dust not the cause of the Cretaceous-Tertiary mass extinction, Geology 30, 99-102.CrossRefADSGoogle Scholar
  16. 16.
  17. 17.
    alton, R. (2003) Long-lost wave report sinks asteroid impact theory, Nature 421, 679.CrossRefADSGoogle Scholar
  18. 18.
    ikonov, A. A. (1997) Tsunami occurrence on the coasts of the Black Sea and the Sea of Azov, Izvestiya, Physics of the Solid Earth 33, 77-87.Google Scholar
  19. 19.
    ondorskaya, N. V. and Shebalin, N. V. (1982) New Catalog of Strong Earthquakes in the Territory of the USSR from Ancient Time to 1975, SE-31, United States Department of Commerce, Boulder, Colorado.Google Scholar
  20. 20.
    azacu, M. D. (1999) A survey of the techniques which might preserve the biosphere reservation Danube Delta, lecture at: The 8th Symp. Technologies, Installations and Equipments for Improvement of Env. Quality, Bucharest, Romania.Google Scholar
  21. 21.
    azacu, M. D. and Iancu, R. (2001) Elimination of hydrogen sulfide from deep water of Black Sea by a gas-lift plant, lecture at: 11th Conf. Sperin, Bucharest, Romania.Google Scholar
  22. 22.
    azacu, M. D. and Iancu, V. R. (2003) Advantageous technologies for Black Sea water problems and solutions, lecture at: Conf. Int. Environment and Energie, Mangalia-Romania.Google Scholar
  23. 23.
    huster, L. A. (2003) Thinking deep, Civil Engineering 73, 47-53.Google Scholar
  24. 24.
    piridonov, A. (1990) Saving the Black Sea, Science in the USSR 6, 51-58.Google Scholar
  25. 25.
    chuiling, R. D.(2005) Immobilisation of metal wastes by reaction with H2S in anoxic basins. Concept and elaboration, Proc. MedCoast Conference, October 2005.Google Scholar
  26. 26.
    chuiling, R. D. (1996) Geochemical engineering: principles and case studies in Geochemical Approaches to Environmental Engineering of Metals. Ed. R. Reuther, Springer-Verlag, 3-12.Google Scholar
  27. 27.
    azur, V. A., Tsykalo A. L., and Schuiling, R. D. (1997) Biogeochemical processes in the depths of the Black Sea as a model of wastes transforming technology (in Russian), Emergency Situations and Civil Defense 2, 40-509.Google Scholar
  28. 28.
    eretin, L. N. et al. (2004) Advancing knowledge of anoxic systems of the world ocean, EOS 85, 47 & 5.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Roelof Dirk Schuiling
    • 1
  • Richard B. Cathcart
    • 2
  • Viorel Badescu
    • 3
  1. 1.Utrecht UniversityThe Netherlands
  2. 2.GeographosBurbankUSA
  3. 3.Candida Oancea Institute of Solar EnergyPolytechnic University of BucharestRomania

Personalised recommendations