Advertisement

Portable confocal scanning optical microscopy of Australopithecus africanus enamel structure

  • T.G. Bromage
  • R. Lacruz
  • A. Perez-Ochoa
  • A. Boyde
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

Abstract

The study of hominid enamel microanatomical features is usually restricted to the examination of fortuitous enamel fractures by low magnification stereo-zoom microscopy or, rarely, because of its intrusive nature, by high magnification compound microscopy of ground thin sections. To contend with limitations of magnification and specimen preparation, a Portable Confocal Scanning Optical Microscope (PCSOM) has been specifically developed for the non-contact and non-destructive imaging of early hominid hard tissue microanatomy. This unique instrument can be used for high resolution imaging of both the external features of enamel, such as perikymata and microwear, as well as internal structures, such as cross striations and striae of Retzius, from naturally fractured or worn enamel surfaces. Because there is veritably no specimen size or shape that cannot be imaged (e.g. fractured enamel surfaces on intact cranial remains), study samples may also be increased over what would have been possible before. We have applied this innovative technology to the study of enamel microanatomical features from naturally occurring occluso-cervical fractures of the South African hominid, Australopithecus africanus representing different tooth types. We present for the first time detailed information regarding cross striation periodicity for this species and, in addition, we present data on striae-EDJ angles in a large sample of teeth and crown formation time for a molar of A. africanus. Our results characterize a pattern of enamel development for A. africanus, which is different to that reported for the genus Paranthropus, as previously observed.

Keywords

portable confocal microscope hominid skeletal microstructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, L., Lacruz, R.S., de Ruiter, D.J., 2002. Revised age estimates of Australopithecus bearing deposits at Sterkfontein, South Africa. American Journal of Physical Anthropology 119, 192-197.CrossRefGoogle Scholar
  2. Beynon, A.D., Dean, M.C., 1987. Crown formation time of a fossil hominid premolar tooth. Archives of Oral Biology 32, 773-780.CrossRefGoogle Scholar
  3. Beynon, A.D., Dean, M.C., 1988. Distinct dental development patterns in early fossil hominids. Nature 335, 509-514.CrossRefGoogle Scholar
  4. Beynon, A.D., Dean, M.C., Reid, D.J., 1991. A histological study on the chronology of the developing dentition of gorilla and orangutan. American Journal of Physical Anthropology 86, 295-309.CrossRefGoogle Scholar
  5. Beynon, A.D., Wood, B., 1986. Variations in enamel thickness and structure in East African hominids. American Journal of Physical Anthropology 70, 177-193.CrossRefGoogle Scholar
  6. Beynon, A.D., Wood, B., 1987. Patterns and rates of enamel growth on the molar teeth of early hominids. Nature 326, 493-496.CrossRefGoogle Scholar
  7. Boyde, A., 1964. The structure and development of mammalian enamel. Ph.D. Dissertation, University of London.Google Scholar
  8. Boyde, A., 1990. Developmental interpretations of dental microstructure. In: Jean de Rousseau, C. (Ed.), Primate Life History and Evolution. Wiley-Liss Publ., New York, pp. 229-267.Google Scholar
  9. Boyde, A., 1995. Confocal optical microscopy. In: Wootton, R., Springall, D.R., Polak, J.M. (Eds.), Image Analysis in Histology: Conventional and Confocal Microscopy. Cambridge University Press, Cambridge, UK, pp. 151-196.Google Scholar
  10. Boyde, A., Petran, M., Hadravsky, M., 1983. Tandem scanning reflected light microscopy of internal features in whole bone and tooth samples. Journal of Microscopy 132, 1-7.CrossRefGoogle Scholar
  11. Bromage, T.G., 1991. Enamel incremental periodicity in the pig-tailed macaque: a polychrome fluorescent labelling study of dental hard tissues. American Journal of Physical Anthropology 86, 205-214.CrossRefGoogle Scholar
  12. Bromage, T.G., Dean, M.C., 1985. Re-evaluation of the age at death of immature fossil hominids. Nature 317, 525-527.CrossRefGoogle Scholar
  13. Bromage, T.G., Perez-Ochoa, A., Boyde, A., 2003. The portable confocal microscope: scanning optical microscopy anywhere. In: Méndez Vilas, A. (Ed.), Science, Technology and Education of Microscopy: An Overview. Formatex, Badajoz, Spain, pp. 742-752.Google Scholar
  14. Bromage, T.G., Perez-Ochoa, A., Boyde, A., 2005. Portable confocal microscope reveals fossil hominid microstructure. Microscopic Analysis 19, 5-7.Google Scholar
  15. Dean, M.C., 1987. Growth layers and incremental markings in hard tissues, a review of the literature and some preliminary observations about enamel structure of Paranthropus boisei. Journal of Human Evolution 16, 157-172.CrossRefGoogle Scholar
  16. Dean, M.C., Beynon, A.D., Reid, D.J., Whittaker, D.K., 1993a. A longitudinal study of tooth growth in a single individual based on long and short period markings in dentine and enamel. International Journal of Osteoarchaeology 3, 249-264.CrossRefGoogle Scholar
  17. Dean, M.C., Beynon, A.D., hackeray, J.F., Macho, G.A., 1993b. Histological reconstruction of dental development and age at death of a juvenile Paranthropus robustus specimen, SK 63, from Swartkrans, South Africa. American Journal of Physical Anthropology 91, 401-419.CrossRefGoogle Scholar
  18. Dean, M.C., Leakey, M., Reid, D., Schrenk, F., Schwartz, G., Stringer, C., Walker, A., 2001. Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins. Nature 44, 628-631.CrossRefGoogle Scholar
  19. Dean, M.C., Reid, D.J., 2001. Perikymata and distribution on Hominid anterior teeth. American Journal of Physical Anthropology 116, 209-215.CrossRefGoogle Scholar
  20. Grine, F.E., Martin, L.B., 1988. Enamel thickness and development in Australopithecus and Paranthropus. In: Grine, F.E. (Ed.), The Evolutionary History of the ‘‘Robust’’ Australopithecines. Aldine de Gruyter, New York, pp. 3-42.Google Scholar
  21. Kino, G.S., 1995. Intermediate optics in Nipkow disk microscopes. In: Pawley, J.B. (Ed.), Handbook of Biological Confocal Microscopy. Plenum Press, New York, pp. 155-165.CrossRefGoogle Scholar
  22. Kraus, B.S., Jordan, R.E., 1965. The human dentition before birth. Lea & Febiger Publ., Philadelphia.Google Scholar
  23. Macho, G.A., Wood, B.A., 1995. The role of time and timing in hominid dental evolution. Evolutionary Anthropology 4, 17-31.CrossRefGoogle Scholar
  24. Nipkow, P., 1884. Elektrisches teleskop. Patentschrift 30105 (Kaiserliches Patentamt, Berlin), patented 06.01.1884.Google Scholar
  25. Petran, M., Hadravsky, M., 1966. Method and arrangement for improving the resolving power and contrast. United States Patent No. 3,517,980, priority 05.12.1966, patented 30.06.1970 US.Google Scholar
  26. Ramirez Rozzi, F., 1993. Tooth development in East African Paranthropus. Journal of Human Evolution 24, 429-454.CrossRefGoogle Scholar
  27. Ramirez Rozzi, F., 1998. Can enamel microstructure be used to establish the presence of different species of Plio-Pleistocene hominids from Omo, Ethiopia? Journal of Human Evolution 35, 543-576.CrossRefGoogle Scholar
  28. Ramirez Rozzi, F., 2002. Enamel microstructure in hominids: New characteristics for a new paradigm. In: Minugh-Purvis, N., McNamara, K.J. (Eds.), Human Evolution Through Developmental Change. Johns Hopkins University Press, Baltimore, pp. 319-348.Google Scholar
  29. Reid, D.J., Beynon, A.D., Ramirez Rozzi, F.V., 1998a. Histological reconstruction of dental development in four individuals from a Medieval site in Picardie, France. Journal of Human Evolution 35, 463-478.CrossRefGoogle Scholar
  30. Reid, D.J., Schwartz, G.T., Dean, M.C., Chandrasekera, M.S., 1998b. A histological reconstruction of dental development in the common chimpanzee. Journal of Human Evolution 35, 427-448.CrossRefGoogle Scholar
  31. Risnes, S., 1986. Enamel apposition rate and the prism periodicity in human teeth. Scandinavian Journal of Dental Research 94, 394-404.Google Scholar
  32. Schwartz, G.T., Liu, W., Zheng, L. (2003). Preliminary investigation of dental microstructure in the Yuanmou hominoid (Lufengpithecus hudienensis), Yumn Province, China. Journal of Human Evolution 44, 189-202.CrossRefGoogle Scholar
  33. Smith, T.M., 2004. Incremental development of primate dental enamel. Ph.D. Dissertation, State University of New York, Stony Brook.Google Scholar
  34. obias, P.V., 1980. Australopithecus afarensis and A. africanus: critique and an alternative hypothesis. Palaeontologica Africa 23, 1-17.Google Scholar
  35. Vrba, E.S., 1995. The fossil record of African antelopes (Mammalia, Bovidae) in relation to human evolution and paleoclimate. In: Vrba, E.S. (Ed.), Paleoclimate and Evolution, With Emphasis on Human Origins. Yale University Press, New Haven, pp. 385-424.Google Scholar
  36. White, T.D., Johanson, D.C., Kimbel, W.H., 1981. Australopithecus africanus: its phyletic position reconsidered. South African Journal of Science 77, 445-471.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • T.G. Bromage
    • 1
  • R. Lacruz
    • 2
  • A. Perez-Ochoa
    • 3
  • A. Boyde
    • 4
  1. 1.Hard Tissue Research Unit, Dep’ts of Biomaterials and Basic SciencesNew York University College of DentistryNew YorkUSA
  2. 2.Institute for Human Evolution, B.P.I. for Palaeontological ResearchUniversity of the WitwatersrandJohannesburgSouth Africa
  3. 3.Instituto de Postgrado y Extension Universitaria Centro Superior de Estudios Universitarios LA SALLE Universidad Autonoma de MadridMadridSpain
  4. 4.Hard Tissue Research Unit, Dental BiophysicsQueen Mary University of LondonLondonEngland

Personalised recommendations