Silicon in Plant Nutrition

Effects on zinc, manganese and boron leaf concentrations and compartmentation
  • H. Wiese
  • M. Nikolic
  • V. Römheld


Silicon (Si), taken up as Si(OH)4 by plants, is transported and deposited mainly in the apoplast since Si transport and distribution follows that of water. This makes it rather likely that it influences the physical and chemical properties of the apoplast. In order to investigate the effect of Si on the properties of the leaf apoplast, mineral concentrations and binding forms of ions in the cell walls and intercellular washing fluid were determined. Three mineral element/silicon interactions were the focus of our study: a) the influence of Si on phosphate-induced zinc deficiency, b) effects of Si on exchange capacity and binding forms of manganese in the leaf apoplast and c) silicon/boron interactions. Silicon was shown to influence in particular the compartmentation of zinc, boron, and manganese.

Key words

binding forms cell wall compartmentation silicon–boron interaction silicon–manganese interaction silicon–zinc interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adatia, M.H. and Besford, R.T. (1986). The effects of silicon on cucumber plants grown in recirculating nutrient solution. Ann. Bot., 58, 343–351.Google Scholar
  2. Ahmad, R., Zaheer, S.H. and Ismail, S. (1992). Role in silicon in salt tolerance of wheat (Triticum aestivum L.). Plant Sci., 85, 43–50.CrossRefGoogle Scholar
  3. Barber, D.A. and Shone, M.G.T. (1966). The absorption of silica from aqueous solutions by plants. J. Exp. Bot., 17, 569–578.CrossRefGoogle Scholar
  4. Barceló, J., Guevara, P. and Poschenrieder, C. (1993). Silicon amelioration of aluminium toxicity in teosinte (Zea mays L. ssp. mexicana). Plant Soil, 154, 249–255.CrossRefGoogle Scholar
  5. Bergmann, W. (1988). Ernährungsstörungen bei Kulturpflanzen. Jena: Gustav Fischer Verlag.Google Scholar
  6. Blaich, R. and Grundhofer, H. (1998). Silicate incrusts induced by powdery mildew in cell walls of different plant species. Z. Pflanzenkr. Pflanzenschutz, 105, 114–120.Google Scholar
  7. Bode, E., Kozik, S., Kunz, U. and Lehmann, H. (1994). Vergleichende elektronenmikroskopische Untersuchungen zur Lokalisation von Silizium in Blättern zweier verschiedener Gräserarten. Dtsch. Tierärztl. Wschr., 101, 367–372.Google Scholar
  8. Bowen, J.E. (1972). Manganese-silicon interaction and its effect on growth of Sudan grass. Plant Soil, 37, 577–588.CrossRefGoogle Scholar
  9. Brown, P.H. and Hu, H. (1994). Boron uptake by sunflower, squash and cultured tobacco cells. Physiol. Plant., 91, 435–441.CrossRefGoogle Scholar
  10. Brown, P.H., Bellaloui, N., Hu, H. and Dandekar, A. (1999). Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron deficiency. Plant Physiol., 119, 17–20.CrossRefPubMedGoogle Scholar
  11. Cakmak, I. and Marschner, H. (1986). Mechanism of phosphorus-induced zinc deficiency in cotton. I. Zinc deficiency-enhanced uptake rate of phosphorus. Physiol. Plant., 68, 483–490.CrossRefGoogle Scholar
  12. Cakmak, I. and Marschner, H. (1987). Mechanism of phosphorus-induced zinc deficiency in cotton III. Changes in physiological availability of zinc in plants. Physiol. Plant., 70, 13–20.CrossRefGoogle Scholar
  13. Cocker, K.M., Evans, D.E. and Hodson, M.J. (1998a). The amelioration of aluminium toxicity by silicon in higher plants: Solution chemistry or an in planta mechanism? Physiol. Plant., 104, 608–614.CrossRefGoogle Scholar
  14. Cocker, K.M., Evans, D.E. and Hodson, M.J. (1998b). The amelioration of aluminium toxicity by silicon in wheat (Triticum aestivum L.) – malate exudation as evidence for an in planta mechanism. Planta, 204, 318–323.CrossRefGoogle Scholar
  15. Cocker, K.M., Hodson, M.J., Evans, D.E. and Sangster, A.G. (1998c). Interaction between silicon and aluminium in Triticum aestivum L. (cv. Celtic). Israel J. Plant. Sci., 45, 285–292.Google Scholar
  16. Corrales, I., Poschenrieder, C. and Barceló, J. (1997). Influence of silicon pretreatment on aluminium toxicity in maize roots. Plant Soil, 190, 203–209.CrossRefGoogle Scholar
  17. Dannel, F., Pfeffer, H. and Römheld, V. (1998) Compartmentation of boron in roots and leaves of sunflower as affected by boron supply. J. Plant Physiol., 153, 615–622.Google Scholar
  18. Dannel, F., Pfeffer, H. and Römheld, V. (2002) Update on boron in higher plants–Uptake, primary translocation and compartmentation. Plant Biol., 4, 193–204.CrossRefGoogle Scholar
  19. El-Jaoual, T. and Cox, D.A. (1998). Manganese toxicity in plants. J. Plant Nutr., 21, 353–386.CrossRefGoogle Scholar
  20. Epstein, E. (1994). The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. USA, 91, 11–17.PubMedCrossRefGoogle Scholar
  21. Epstein, E. (1999). Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 641–664.PubMedCrossRefGoogle Scholar
  22. Galvez, L., Clark, R.B., Gourley, L.M. and Maranville, J.W. (1987). Silicon interactions with manganese and aluminium toxicity in sorghum. J. Plant Nutr., 10, 1139–1147.Google Scholar
  23. Galvez, L,, Clark, R.B., Gourley, L.M. and Maranville, J.W. (1989). Effects of silicon on mineral composition of sorghum grown with excess manganese. J. Plant Nutr., 12, 547–561.Google Scholar
  24. Goldbach, H.E., Blaser-Grill, J., Lindemann, N., Porzelt, M., Hörrmann, C., Lupp, B. and Gessner, B. (1991). Influence of boron on net proton release and its relation to other metabolic processes. Curr. Top. Plant Biochem. Physiol., 10, 195–220.Google Scholar
  25. Goldberg R. 1985. Cell-wall isolation, general growth aspects. In: Cell Components, Modern Methods of Plant Analysis. Springer Verlag Berlin.Google Scholar
  26. González, A. and Lynch, J.P. (1999). Subcellular and tissue Mn compartmentation in bean leaves under Mn toxicity stress. Aust. J. Plant Physiol., 26, 811–822.CrossRefGoogle Scholar
  27. González, A., Steffen, K.L. and Lynch, J.P. (1998). Light and excess manganese. Plant Physiol., 118, 493–504.CrossRefPubMedGoogle Scholar
  28. Hammond, K.E., Evans, D.E. and Hodson, M.J. (1995). Aluminium silicon interactions in barley (Hordeum vulgare L.) seedlings. Plant Soil, 173, 89–95.CrossRefGoogle Scholar
  29. Handreck, K.A. and Jones, L.H.P. (1968). Studies of silica in the oat plant. IV. Silica content of plant parts in relation to stage of growth, supply of silica, and transpiration. Plant Soil, 24, 449–458.CrossRefGoogle Scholar
  30. Heine, G., Tikum, G. and Horst, W.J. (2005). Silicon nutrition of tomato and bitter gourd with special emphasis on silicon distribution in root fractions. J. Plant Nutr. Soil Sci., 168, 600–606.CrossRefGoogle Scholar
  31. Hodson M.J. and Evans D.E. (1995). Aluminium silicon interactions in higher plants. J. Exp. Bot. 46 (283), 161–171.CrossRefGoogle Scholar
  32. Hodson, M.J. and Sangster, A.G. (1989a). Silica deposition in the inflorescence bracts of wheat (Triticum aestivum). II. X-ray microanalysis and backscattered electron imaging. Can. J. Bot., 67, 281–287.Google Scholar
  33. Hodson, M.J. and Sangster, A.G. (1993). The interaction between silicon and aluminium in Sorghum bicolor (L.) Moench: growth analysis and X-ray microanalysis. Ann. Bot., 72, 389–400.CrossRefGoogle Scholar
  34. Horiguchi, T. (1987). Mechanism of manganese toxicity and tolerance of plants, II. Deposition of oxidized manganese in plant tissues. Soil Sci. Plant Nutr., 33, 595–606.Google Scholar
  35. Horst, W.J. and Marschner, H. (1978a) Symptome von Mangan-Überschuss bei Bohnen (Phaseolus vulgaris). Z. Pflanzenernaehr. Bodenkd., 141, 129–142.CrossRefGoogle Scholar
  36. Horst, W.J. and Marschner H (1978b) Einfluß von Silizium auf den Bindungszustand von Mangan im Blattgewebe von Bohnen (Phaseolus vulgaris). Z. Pflanzenernaehr. Bodenkd., 141, 487–497.CrossRefGoogle Scholar
  37. Horst, W.J. and Marschner, H. (1978c). Effect of silicon on manganese tolerance of bean plants (Phaseolus vulgaris L.). Plant Soil, 50, 287–303.CrossRefGoogle Scholar
  38. Horst, W.J., Fecht, M., Naumann, A., Wissemeier, A.H. and Maier, P. (1999). Physiology of manganese toxicity and tolerance in Vigna unguiculata (L.) Walp. J. Plant Nutr. Soil Sci., 162, 263–274.CrossRefGoogle Scholar
  39. Idris, M., Hossain, M. and Choudhury, F.A. (1975). The effect of silicon on lodging of rice in presence of added nitrogen. Plant Soil, 43, 691–695.CrossRefGoogle Scholar
  40. Islam, A. and Saha, R.C. (1969). Effects of silicon on the chemical composition of rice plants. Plant Soil, 30, 446–457.CrossRefGoogle Scholar
  41. Iwasaki, K. and Matsumura, A. (1999). Effect of Silicon on Alleviation of Manganese,Toxicity in Pumpkin (Cucurbita moschataDuch. cv. Shintosa). Soil Sci. Plant Nutr., 45, 909–920.Google Scholar
  42. Iwasaki, K., Maier, P., Fecht, M. and Horst, W.J. (2002a). Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata (L.) Walp.). Plant Soil, 238, 281–288.CrossRefGoogle Scholar
  43. Iwasaki, K., Maier, P., Fecht, M. and Horst, W.J. (2002b). Leaf apoplastic silicon enhances manganese tolerance of cowpea (Vigna unguiculata(L.) Walp.). J. Plant Physiol., 159, 167–173.CrossRefGoogle Scholar
  44. Jones, L.H.P. and Handreck, K.A. (1965). Studies of silica in the oat plant. III. Uptake of silica from soils by the plant. Plant Soil, 23, 79–96.CrossRefGoogle Scholar
  45. Kaufman, P.B., Dayanandan, P. and Franklin, C.A. (1985). Structure and function of silica bodies in the epidermal system of grass shoots. Ann. Bot., 55, 487–507.Google Scholar
  46. Kinrade, S.D., Del Nin, J.W., Schach, A.S., Sloan, T.A., Wilson, K.L. and Knight, C.T.G. (1999). Stable five- and six-coordinated silicate anions in aqueous solution. Science, 285, 1542–1545.PubMedCrossRefGoogle Scholar
  47. Kluthcouski, J. (1980). The effect of silicon on the manganese nutrition of soybeans (Glycine max (L.) Merrill). Plant Soil, 56, 157–160.CrossRefGoogle Scholar
  48. Liang, Y. and Shen, Z. (1994). Interaction of silicon and boron in oilseed rape plants. J. Plant Nutr., 17, 415–425.Google Scholar
  49. Liang, Y., Shen, Q., Shen, Z. and Ma, T. (1996). Effects of silicon on salinity tolerance of two barley cultivars. J. Plant Nutr., 19, 173–183.Google Scholar
  50. Liang, Y., Si, J. and Römheld, V. (2005).,Silicon uptake and transport is an active process in Cucumis sativus L.New Phytol., 167, 797–804.PubMedCrossRefGoogle Scholar
  51. Liang, Y.C., Sun, W.C., Si, J. and Romheld, V. (2005). Effects of foliar-and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathol., 54, 678–685.CrossRefGoogle Scholar
  52. Loomis, W.D. and Durst, R.W. (1992). Chemistry and biology of boron. BioFactors, 3, 229–239.PubMedGoogle Scholar
  53. Ma, J. and Takahashi, E. (1990). The effect of silicic acid on rice in a P-deficient soil. Plant Soil, 126, 121–125.CrossRefGoogle Scholar
  54. Ma. J. and Takahashi, E. (1991). Effect of silicate on phosphate availability for rice in a P- deficient soil. Plant Soil, 133, 151–155.CrossRefGoogle Scholar
  55. Ma, J. and Takahashi, E. (1993). Interaction between calcium and silicon in water-cultured rice plants. Plant Soil, 148, 107–113.CrossRefGoogle Scholar
  56. Ma, J.F., Tamai, K., Ichii, M. and Wu, G.F. (2002). A rice mutant defective in Si uptake. Plant Physiol., 130, 2111–2117.PubMedCrossRefGoogle Scholar
  57. Ma, J.F., Mitani, N., Nagoa, S., Konishi, S., Tamai, K., Iwashita, T. and Yano, M. (2004). Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiol., 136, 3248–3289.CrossRefGoogle Scholar
  58. Marschner, H., Oberle, H., Cakmak, I. and Römheld, V. (1990). Growth enhancement by silicon in cucumber (Cucumis sativus) plants depends on imbalance in phosphorus and zinc supply. In M.L. van Beusichem (ed.), Plant nutritionPhysiology and applications (pp. 241–249). Dordrecht: Kluwer Academic Publishers.Google Scholar
  59. Marschner, H. and Cakmak, I. (1986). Mechanism of phosphorus-induced zinc deficiency in cotton. II. Evidence for impaired shoot control of phosphorus uptake and translocation under zinc deficiency. Physiol. Plant., 68, 491–496.CrossRefGoogle Scholar
  60. Mitani, N. and Ma, J.F. (2005). Uptake system of silicon in different plant species. J. Exp. Bot., 414, 1255–1261.CrossRefGoogle Scholar
  61. Miyake, Y. and Takahashi, E. (1978). Silicon deficiency of tomato plant. Soil Sci. Plant Nutr., 24, 175–189.Google Scholar
  62. Miyake, Y. and Takahashi, E. (1983). Effect of silicon on the growth of solution-cultured cucumber plant. Soil Sci. Plant Nutr., 29, 71–83.Google Scholar
  63. Nable, R.O., Lance, R.C.M. and Cartwright, B. (1990). Uptake of boron and silicon by barley genotypes with differing susceptibilities to boron toxicity. Ann. Bot., 66, 83–90.Google Scholar
  64. Neumann, D., Zurnieden, U., Schwieger, W., Leopold, I. and Lichtenberger, O. (1997). Heavy metal tolerance of Minuartia verna. J. Plant Physiol., 151, 101–108.Google Scholar
  65. Polster J and Schwenk M (1992) The role of boron, silicon and nucleic bases on pollen tube growth of Lilium longiflorum (L.). Z. Naturforsch., 47, 102–108.Google Scholar
  66. Rafi, M.M., Epstein, E. and Falk, R.H. (1997). Silicon deprivation causes physical abnormalities in wheat (Triticum aestivum L.). J. Plant Physiol., 151, 497–501.Google Scholar
  67. Raven, J.A. (1983). The transport and function of silicon in plants. Biol. Rev. Camb. Philos. Soc., 58, 179–207.Google Scholar
  68. Rogalla, H. (2001). Einfluss von Silizium auf Austauschereigenschaften des Apoplasten und indungszustand von Nährstoffen in Blättern. Dissertation. Universität Hohenheim, Institut für Botanik und Botanischer Garten und Institut für Pflanzenernährung. Stuttgart: Verlag Grauer (ISBN 3-86186-363-4).Google Scholar
  69. Rogalla, H. and Römheld, V. (2001). Mechanism of silicon-mediated manganese tolerance of Cucumis sativus L.: Effect of silicon nutrition on manganese concentration in the intercellular washing fluid. In W.J. Horst et al. (eds), Plant nutrition – Food security and sustainability of agro-ecosystems (pp. 258–259). Dordrecht: Kluwer Academic Publishers.Google Scholar
  70. Rogalla, H. and Römheld, V. (2002a). Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant Cell Environ., 25, 549–555.CrossRefGoogle Scholar
  71. Rogalla, H. and Römheld, V. (2002b). Effects of silicon on the availability of boron: possible effects on the phenol pathway and on the redox status in Cucumis sativus L. In H. Goldbach et al. (eds), Boron nutrition in animals and plants (pp. 205–213). London: Kluwer Plenum Academic Publishers.Google Scholar
  72. Samuels, A.L., Glass, A.D.M., Menzies, J.G. and Ehret, D.L. (1994). Silicon in cell walls and papillae of Cucumis sativus during infection by Sphaerotheca fuliginea. Physiol. Mol. Plant Pathol., 44, 237–242.CrossRefGoogle Scholar
  73. Takahashi, E., Ma, J.F. and Miyake, Y. (1990). The possibility of silicon as an essential element for higher plants. Comm. Agric. Food Chem., 2, 99–122.Google Scholar
  74. Vorm, P.D.J., v.d. (1980). Uptake of Si by five plant species, as influenced by variations in Si-supply. Plant Soil, 56, 153–156.CrossRefGoogle Scholar
  75. Wang, Y., Stass, A and Horst, W.J. (2004). Apoplastic binding of aluminum is involved in silicon-induced amlioration of aluminum toxicity in maize. Plant Physiol., 136, 3762–3770.PubMedCrossRefGoogle Scholar
  76. Wiese, J., Wiese, H., Schwartz, J. and Schubert, S. (2005). Osmotic stress and silicon act additively in enhancing pathogen resistance in barley against barley powdery mildew. J. Plant Nutr. Soil Sci., 168, 1–6.CrossRefGoogle Scholar
  77. Williams, E.D. and Vlamis, J. (1957). The effect of silicon on yield and manganese-54 uptake and distribution in the leaves of barley plants grown in culture solutions. Plant Physiol., 32, 404–409.PubMedGoogle Scholar
  78. Wissemeier, A.H. and Horst, W.J. (1992). Effect of light intensity on manganese toxicity symptoms and callose formation in cowpea (Vigna unguiculata (L.) Walp). Plant Soil, 143, 299–309.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • H. Wiese
    • 1
  • M. Nikolic
    • 2
  • V. Römheld
    • 3
  1. 1.Institut für Pflanzenernährung, Justus-Liebig-Universität GießbenGermany
  2. 2.Centre for Multidisciplinary Studies of the Belgrade UniversitySerbia
  3. 3.Institut für Pflanzenernährung (330), Universität HohenheimGermany

Personalised recommendations