Rainfall Estimation Using a Cloud Patch Classification Map

  • Kuo-Lin Hsu
  • Yang Hong
  • Soroosh Sorooshian
Part of the Advances In Global Change Research book series (AGLO, volume 28)


Rain Rate Convective Cloud Cloud System Rainfall Rate Global Precipitation Climatology Project 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5 References

  1. Adler, R. F., G. J. Huffman, and P. R. Keehn, 1994: Global rain estimates from microwave adjusted geosynchronous IR data. Remote Sens. Rev., 11, 125-152.Google Scholar
  2. Atlas, D., D. Rosenfeld, and D. B. Wolff, 1990: Climatologically tuned reflectivity-rainrate relationship and links to area-time integrals. J. Appl. Meteor., 29, 1120-1135.CrossRefGoogle Scholar
  3. Ba, M. B. and A. Gruber, 2001: GOES multiple spectral rainfall algorithm (GMSRA). J. Appl. Meteor., 40, 1500-1541.CrossRefGoogle Scholar
  4. Bellerby, T., M. Todd, D. Kniveton, and C. Kidd, 2000: Rainfall estimation from a combination of TRMM Precipitation Radar and GOES multispectral satellite imagery through the use of an artificial neural network. J. Appl. Meteor., 39, 2115-2128.CrossRefGoogle Scholar
  5. Dobrin, B. P., T. Viero, and M. Gabbouj, 1994: Fast watershed algorithms: analysis and extensions. Nonlinear Image Processing V., 2180, 209-220.Google Scholar
  6. Duan, Q., S. Sorooshian, and V. K. Gupta, 1992: Effective and efficient global optimization for conceptual rainfall-runoff model. Water Resource Res., 28(4), 1015-1031.CrossRefGoogle Scholar
  7. Fulton, R. A, J. P. Breidenbach, D. J. Seo, and D. A. Miller, 1998: The WSD-88D rainfall algorithm. Wea. Forecasting, 13, 377-395.CrossRefGoogle Scholar
  8. Hong, Y., K. Hsu, X. Gao, and S. Sorooshian, 2004: Precipitation estimation from remotely sensed information using an artificial neural network-cloud classification system. J. Appl. Meteor., 43, 1834-1853.CrossRefGoogle Scholar
  9. Hsu, K, X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 1176-1190.CrossRefGoogle Scholar
  10. Hsu, K., H. V. Gupta, X. Gao, and S. Sorooshian, 1999: Estimation of physical variables from multichannel remotely sensed imagery using a neural networks: application to rainfall estimation. Water Resource Res., 35(5), 1605-1618.CrossRefGoogle Scholar
  11. Huffman, G. J., R. F. Adler, P. A. Arkin, A. Chang, R. Ferraro, A. Gruber, J. Janowiak, A. McNab, B. Rudolph, and U. Schneider, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 5-20.CrossRefGoogle Scholar
  12. Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 36-50.CrossRefGoogle Scholar
  13. Hykin, S., 1994: Neural Networks: A Comprehensive Foundation. Macmillan College Pub.Google Scholar
  14. Kohonen, T., 1995: Self-Organizing Map. Springer-Verlag.Google Scholar
  15. Levizzani, V., J. Schmetz, H. J. Lutz, J. Kerkmann, P. P. Alberoni, and M. Cervino, 2000: Precipitation estimations from geostationay orbit and prospects for METEOSAT Second Generation. Meteor. Appl., 8, 23-41.CrossRefGoogle Scholar
  16. [NCEP] National Center for Environmental Prediction, National Stage IV QPE Product.
  17. Scofield, R. A., 1987: The NESDIS operational convective precipitation technique. Mon. Wea. Rev., 115, 1773-1792.CrossRefGoogle Scholar
  18. Scofield, R. A. and R. J. Kuligowski, 2002: Status and outlook of operational satellite precipitation algorithms for extreme precipitation events. Proc. 1 st Workshop Int. Precipitation Working Group; September 23-27 2002; Madrid, Spain, 43-51.Google Scholar
  19. Sorooshian, S., K. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: An evaluation of PERSIANN system satellite-based estimations of tropical rainfall. Bull. Amer. Meteor. Soc., 81(9), 2035-2046.CrossRefGoogle Scholar
  20. Tapiador, F. J., C. Kidd, V. Levizzani, and F. S. Marzano, 2002: A neural network PMW/IR combined procedure for short term/small area rainfall estimates. Proc. 1 st Workshop Int. Precipitation Working Grou p, September 23-27 2002, Madrid, Spain, 167-173.Google Scholar
  21. Turk, F. J., F. S. Marzano, and E. A. Smith, 1998: Combining geostationary and SSM/I data for rapid rain rate estimation and accumulation. Proc. 9th Conference on Satellite Meteorology and Oceanography, Paris, 462-465.Google Scholar
  22. Vicente, G., and R. A. Scofield, 1998: The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc., 79, 1883-1898.CrossRefGoogle Scholar
  23. Vincent, L. and P. Soille, 1991: Watersheds in digital spaces: an efficient algorithm based on immersion simulations.” IEEE Trans. Pattern Ana. Machine Intell., 13(6), 583-598.CrossRefGoogle Scholar
  24. Xie, P. and P. A. Arkin, 1997: Global precipitation: A 17 years observation based on gauge observations, satellite estimates and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539-2558.CrossRefGoogle Scholar
  25. Xu, L., X. Gao, S. Sorooshian, P. A. Arkin, and B. Imam, 1999: A microwave-infrared threshold technique to improve the GOES Precipitation Index. J. Appl. Meteor., 38, 569-579.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Kuo-Lin Hsu
    • 1
  • Yang Hong
    • 2
  • Soroosh Sorooshian
    • 3
  1. 1.Department of Civil and Environmental EngineeringUniversity of CaliforniaIrvineUSA
  2. 2.Department of Civil and Environmental EngineeringUniversity of CaliforniaIrvineUSA
  3. 3.Department of Civil and Environmental EngineeringUniversity of CaliforniaIrvineUSA

Personalised recommendations