Rainfall Estimation Using a Cloud Patch Classification Map

  • Kuo-Lin Hsu
  • Yang Hong
  • Soroosh Sorooshian
Part of the Advances In Global Change Research book series (AGLO, volume 28)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5 References

  1. Adler, R. F., G. J. Huffman, and P. R. Keehn, 1994: Global rain estimates from microwave adjusted geosynchronous IR data. Remote Sens. Rev., 11, 125-152.Google Scholar
  2. Atlas, D., D. Rosenfeld, and D. B. Wolff, 1990: Climatologically tuned reflectivity-rainrate relationship and links to area-time integrals. J. Appl. Meteor., 29, 1120-1135.CrossRefGoogle Scholar
  3. Ba, M. B. and A. Gruber, 2001: GOES multiple spectral rainfall algorithm (GMSRA). J. Appl. Meteor., 40, 1500-1541.CrossRefGoogle Scholar
  4. Bellerby, T., M. Todd, D. Kniveton, and C. Kidd, 2000: Rainfall estimation from a combination of TRMM Precipitation Radar and GOES multispectral satellite imagery through the use of an artificial neural network. J. Appl. Meteor., 39, 2115-2128.CrossRefGoogle Scholar
  5. Dobrin, B. P., T. Viero, and M. Gabbouj, 1994: Fast watershed algorithms: analysis and extensions. Nonlinear Image Processing V., 2180, 209-220.Google Scholar
  6. Duan, Q., S. Sorooshian, and V. K. Gupta, 1992: Effective and efficient global optimization for conceptual rainfall-runoff model. Water Resource Res., 28(4), 1015-1031.CrossRefGoogle Scholar
  7. Fulton, R. A, J. P. Breidenbach, D. J. Seo, and D. A. Miller, 1998: The WSD-88D rainfall algorithm. Wea. Forecasting, 13, 377-395.CrossRefGoogle Scholar
  8. Hong, Y., K. Hsu, X. Gao, and S. Sorooshian, 2004: Precipitation estimation from remotely sensed information using an artificial neural network-cloud classification system. J. Appl. Meteor., 43, 1834-1853.CrossRefGoogle Scholar
  9. Hsu, K, X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 1176-1190.CrossRefGoogle Scholar
  10. Hsu, K., H. V. Gupta, X. Gao, and S. Sorooshian, 1999: Estimation of physical variables from multichannel remotely sensed imagery using a neural networks: application to rainfall estimation. Water Resource Res., 35(5), 1605-1618.CrossRefGoogle Scholar
  11. Huffman, G. J., R. F. Adler, P. A. Arkin, A. Chang, R. Ferraro, A. Gruber, J. Janowiak, A. McNab, B. Rudolph, and U. Schneider, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 5-20.CrossRefGoogle Scholar
  12. Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 36-50.CrossRefGoogle Scholar
  13. Hykin, S., 1994: Neural Networks: A Comprehensive Foundation. Macmillan College Pub.Google Scholar
  14. Kohonen, T., 1995: Self-Organizing Map. Springer-Verlag.Google Scholar
  15. Levizzani, V., J. Schmetz, H. J. Lutz, J. Kerkmann, P. P. Alberoni, and M. Cervino, 2000: Precipitation estimations from geostationay orbit and prospects for METEOSAT Second Generation. Meteor. Appl., 8, 23-41.CrossRefGoogle Scholar
  16. [NCEP] National Center for Environmental Prediction, National Stage IV QPE Product. http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4.
  17. Scofield, R. A., 1987: The NESDIS operational convective precipitation technique. Mon. Wea. Rev., 115, 1773-1792.CrossRefGoogle Scholar
  18. Scofield, R. A. and R. J. Kuligowski, 2002: Status and outlook of operational satellite precipitation algorithms for extreme precipitation events. Proc. 1 st Workshop Int. Precipitation Working Group; September 23-27 2002; Madrid, Spain, 43-51.Google Scholar
  19. Sorooshian, S., K. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: An evaluation of PERSIANN system satellite-based estimations of tropical rainfall. Bull. Amer. Meteor. Soc., 81(9), 2035-2046.CrossRefGoogle Scholar
  20. Tapiador, F. J., C. Kidd, V. Levizzani, and F. S. Marzano, 2002: A neural network PMW/IR combined procedure for short term/small area rainfall estimates. Proc. 1 st Workshop Int. Precipitation Working Grou p, September 23-27 2002, Madrid, Spain, 167-173.Google Scholar
  21. Turk, F. J., F. S. Marzano, and E. A. Smith, 1998: Combining geostationary and SSM/I data for rapid rain rate estimation and accumulation. Proc. 9th Conference on Satellite Meteorology and Oceanography, Paris, 462-465.Google Scholar
  22. Vicente, G., and R. A. Scofield, 1998: The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc., 79, 1883-1898.CrossRefGoogle Scholar
  23. Vincent, L. and P. Soille, 1991: Watersheds in digital spaces: an efficient algorithm based on immersion simulations.” IEEE Trans. Pattern Ana. Machine Intell., 13(6), 583-598.CrossRefGoogle Scholar
  24. Xie, P. and P. A. Arkin, 1997: Global precipitation: A 17 years observation based on gauge observations, satellite estimates and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539-2558.CrossRefGoogle Scholar
  25. Xu, L., X. Gao, S. Sorooshian, P. A. Arkin, and B. Imam, 1999: A microwave-infrared threshold technique to improve the GOES Precipitation Index. J. Appl. Meteor., 38, 569-579.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Kuo-Lin Hsu
    • 1
  • Yang Hong
    • 2
  • Soroosh Sorooshian
    • 3
  1. 1.Department of Civil and Environmental EngineeringUniversity of CaliforniaIrvineUSA
  2. 2.Department of Civil and Environmental EngineeringUniversity of CaliforniaIrvineUSA
  3. 3.Department of Civil and Environmental EngineeringUniversity of CaliforniaIrvineUSA

Personalised recommendations