Bacterioplankton communities of Crater Lake, OR: dynamic changes with euphotic zone food web structure and stable deep water populations

  • Ena Urbach
  • Kevin L. Vergin
  • Gary L. Larson
  • Stephen J. Giovannoni
Part of the Developments in Hydrobiology book series (DIHY, volume 191)


The distribution of bacterial and archaeal species in Crater Lake plankton varies dramatically over depth and with time, as assessed by hybridization of group-specific oligonucleotides to RNA extracted from lakewater. Nonmetric, multidimensional scaling (MDS) analysis of relative bacterial phylotype densities revealed complex relationships among assemblages sampled from depth profiles in July, August and September of 1997 through 1999. CL500-11 green nonsulfur bacteria (Phylum Chloroflexi) and marine Group I crenarchaeota are consistently dominant groups in the oxygenated deep waters at 300 and 500 m. Other phylotypes found in the deep waters are similar to surface and mid-depth populations and vary with time. Euphotic zone assemblages are dominated either by β-proteobacteria or CL120-10 verrucomicrobia, and ACK4 actinomycetes. MDS analyses of euphotic zone populations in relation to environmental variables and phytoplankton and zooplankton population structures reveal apparent links between Daphnia pulicaria zooplankton population densities and microbial community structure. These patterns may reflect food web interactions that link kokanee salmon population densities to community structure of the bacterioplankton, via fish predation on Daphnia with cascading consequences to Daphnia bacterivory and predation on bacterivorous protists. These results demonstrate a stable bottom-water microbial community. They also extend previous observations of food web-driven changes in euphotic zone bacterioplankton community structure to an oligotrophic setting.


Crater Lake Bacterioplankton community structure Multidimensional scaling Green nonsulfur bacteria Marine Group I crenarchaeota Daphnia predation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, L., U. Szewzyk, J. Wecke & H. Görisch, 2000. Bacterial dehalorespiration with chlorinated benzenes. Nature 408: 580–583.PubMedCrossRefGoogle Scholar
  2. Arndt, H., 1993. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates)—a review. Hydrobiologia 255: 231–246.CrossRefGoogle Scholar
  3. Bahr, M., J. E. Hobbie & M. L. Sogin, 1996. Bacterial diversity in an arctic lake: a freshwater SAR11 cluster. Aquatic Microbial Ecology 11: 271–277.Google Scholar
  4. Bel’kova, N. L., L. Y. Denisova, E. N. Manakova, E. F. Zaichikov & M. A. Grachev, 1996. Species diversity of deep-water microorganisms of Lake Baikal: analysis of 16S rRNA sequences. Doklady Biological Sciences 348: 692–695.Google Scholar
  5. Boss, E., R. W. Collier & G. L. Larson, 2007. Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR.Google Scholar
  6. Buikema, A. L. Jr., J. D. Miller & W. H. Yongue Jr., 1978. Effects of algae and protozoans on the dynamics of Polyarthra vulgaris. Verhandlungen-Internationale Vereinigung für theoretische und angewandte Limnologie 20: 2395–2399.Google Scholar
  7. Buktenica, M. & S. Girdner, this issue. Life history studies of kokanee salmon and rainbow trout in a deep, ultraoligotrophic caldera lake.Google Scholar
  8. Choi, K., B. Kim & U.-H. Lee, 2001. Characteristics of dissolved organic carbon in three layers of a deep reservoir, Lake Soyang, Korea. International Review of Hydrobiology 86: 63–76.CrossRefGoogle Scholar
  9. Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.CrossRefGoogle Scholar
  10. Clarke, K. R. & R. N. Gorley, 2001. PRIMER. in. PRIMER-E Ltd., Plymouth, UK.Google Scholar
  11. Clarke, K. R. & R. H. Green, 1988. Statistical design and analysis for a ‘biological effects’ study. Marine Ecology Progress Series 46: 213–226.Google Scholar
  12. Collier, R. W., J. Dymond, J. McManus & J. Lupton, 1990. Chemical and physical properties of the water column at Crater Lake, OR. In Drake, E., G. L. Larson, J. Dymond & R. W. Collier (eds), Crater Lake: An Ecosystem Study. AAAS: 69–80.Google Scholar
  13. Collier, R., J. Dymond & J. McManus, 1991. Studies of hydrothermal processes in Crater Lake, OR. Cooperative Agreement No. CA 9000-3-0003. Subagreement No 7., National Park Service, PNW Region, Seattle, WA.Google Scholar
  14. Collier, R., J. Dymond & J. McManus, 1993. Studies of hydrothermal processes. NPS/PNROSU/NRTR-93/03, U.S. Department of the Interior, National Park Service, Pacific Northwest Region, Seattle, WA.Google Scholar
  15. Crawford, G. B. & R. W. Collier, 1997. Observations of a deep-mixing event in Crater Lake, Oregon. Limnology and Oceanography 42: 299–306.CrossRefGoogle Scholar
  16. Crump, B. C., E. V. Armbrust & J. A. Baross, 1999. Phylogenetic analysis of particle-attached and freeliving bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Applied and Environmental Microbiology 65: 3192–3204.PubMedGoogle Scholar
  17. Daley, R. J., G. P. Morris & S. R. Brown, 1973. Phagotrophic ingestion of a blue-green-alga by Ochromonas. Journal of Protozoology 20: 58–61.Google Scholar
  18. Degans, H., E. Zollner, K. Van der Gucht, L. De Meester & K. Jurgens, 2002. Rapid Daphnia-mediated changes in microbial community structure: an experimental study. FEMS Microbiology Ecology 42: 137–149.CrossRefPubMedGoogle Scholar
  19. Dymond, J., R. Collier, J. McMannus & G. L. Larson, 1996. Unbalanced particle flux budget in Crater Lake, Oregon: implications for edge effects and sediment focusing in lakes. Limnology and Oceanography 41: 732–743.CrossRefGoogle Scholar
  20. Field, J. G., K. R. Clarke & R. M. Warwick, 1982. A practical strategy for analysing multispecies distribution patterns. Marine Ecology Progress Series 8: 37–52.Google Scholar
  21. Field, K. G., D. Gordon, M. Rappé, E. Urbach, K. Vergin & S. J. Giovannoni, 1997. Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria. Applied and Environmental Microbiology 63: 63–76.PubMedGoogle Scholar
  22. Giovannoni, S. J., T. B. Britschgi, C. L. Moyer & K. G. Field, 1990a. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345: 60–62.PubMedCrossRefGoogle Scholar
  23. Giovannoni, S. J., E. F. DeLong, T. M. Schmidt & N. R. Pace, 1990b. Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton. Applied and Environmental Microbiology 56: 2572–2575.PubMedGoogle Scholar
  24. Giovannoni, S. J., M. S. Rappé, K. L. Vergin & N. L. Adair, 1996. 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the Green Non-Sulfur bacteria. Proceedings of the National Academy of Sciences of the United States of America 93: 7979–7984.PubMedCrossRefGoogle Scholar
  25. Glöckner, F. O., E. Zaichikov, N. Belkova, L. Denissova, J. Pernthaler, A. Pernthaler & R. Amann, 2000. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Applied and Environmental Microbiology 66: 5053–5065.PubMedCrossRefGoogle Scholar
  26. Gonzalez, J., E. B. Sherr & B. F. Sherr, 1990. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Applied and Environmental Microbiology 56: 583–589.PubMedGoogle Scholar
  27. Groeger, A., 2007. Nutrient limitation in Crater Lake, Oregon.Google Scholar
  28. Groeger, A. W. & T. C. Teitjen, 1993. Physiological responses of nutrient-limited phytoplankton to nutrient addition. Verhandlungen — Internationale Vereinigung für theoretische und angewandte Limnologie 25: 370–372.Google Scholar
  29. Güde, H., 1988. Direct and indirect influences of crustacean zooplankton on bacterioplankton of Lake Constance. Hydrobiologia 159: 63–73.Google Scholar
  30. Hahn, M. W. & M. G. Höfle, 1999. Flagellate predation on a bacterial model community: interplay of size-selective grazing, specific bacterial cell size, and bacterial community composition. Applied and Environmental Microbiology 65: 4863–4872.PubMedGoogle Scholar
  31. Hahn, M. W. & M. G. Höfle, 2001. Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiology Ecology 35: 113–121.PubMedCrossRefGoogle Scholar
  32. Hargreaves, B. R., S. Girdner, M. Buktenica, R. W. Collier, E. Urbach & G. L. Larson, this issue. Ultraviolet radiation and bio-optics in Crater Lake, Oregon.Google Scholar
  33. He, J., K. M. Ritalahti, M. R. Aiello & F. E. Loffler, 2003. Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Applied and Environmental Microbiology 69: 996–1003.PubMedCrossRefGoogle Scholar
  34. Hiorns, W. D., B. A. Methé, S. A. Nierzwicki-Bauer & J. P. Zehr, 1997. Bacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences. Applied and Environmental Microbiology 63: 2957–2960.PubMedGoogle Scholar
  35. Janssen, P. H., A. Schuhmann, E. Mörschel & F. A. Rainey, 1997. Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil. Applied and Environmental Microbiology 63: 1382–1388.PubMedGoogle Scholar
  36. Jürgens, K., 1994. Impact of Daphnia on planktonic microbial food webs—a review. Marine Microbial Food Webs 8: 295–324.Google Scholar
  37. Jürgens, K.& C. Matz, 2002. Predation as a shaping force for the phenotypic and genotypic comosition of planktonic bacteria. Antonie van Leeuwenhoek 81: 413–434.PubMedCrossRefGoogle Scholar
  38. Jürgens, K., H. Arndt & K. O. Rothhaupt, 1994. Zooplankton-mediated changes of bacterial community structure. Microbial Ecology 27: 27–42.CrossRefGoogle Scholar
  39. Jürgens, K., S. A. Wickham, K. O. Rothhaupt & B. Santer, 1996. Feeding rates of macro-and microzooplankton on heterotrophic nanoflagellates. Limnology and Oceanography,: 1833–1839.Google Scholar
  40. Jürgens, K., J. Pernthaler, S. Schalla & R. Amann, 1999. Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. Applied and Environmental Microbiology 65: 1241–1250.PubMedGoogle Scholar
  41. Karner, M. B., E. F. DeLong & D. M. Karl, 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409: 507–510.PubMedCrossRefGoogle Scholar
  42. Kent, A., S. Jones, A. Yannarell, J. Graham, G. Lauster, T. Kratz & E. Triplett, 2004. Annual patterns in bacterioplankton community variability in a humic lake. Microbial Ecology 48: 550–560.PubMedCrossRefGoogle Scholar
  43. Kruskal, J. B., 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29: 1–27.CrossRefGoogle Scholar
  44. Lane, J. L. & C. R. Goldman, 1984. Size-fractionation of natural phytoplankton communities in nutrient bioassay studies. Hydrobiologia 118: 219–223.Google Scholar
  45. Langenheder, S. & K. Jurgens, 2001. Regulation of bacterial biomass and community structure by metazoan and protozoan predation. Limnology and Oceanography 46: 121–134.CrossRefGoogle Scholar
  46. Larson, G. L., 1996. Development of a 10-year limnological study of Crater Lake, Crater Lake National Park, Oregon, USA. Lake and Reservoir Management 12: 221–229.Google Scholar
  47. Larson, G. L., C. D. McIntire, R. E. Truitt, M. W. Buktenica & E. Darnaugh-Thomas, 1996. Zooplankton Assemblages in Crater Lake, Oregon, USA. Lake and Reservoir Management 12: 281–297.Google Scholar
  48. Larson, G. L., C. D. McIntire, M. Buktenica, S. Girdner & R. Hoffman, 2007a. Water quality and optical properties of Crater Lake, Oregon.Google Scholar
  49. Larson, G. L., C. D. McIntire, M. Buktenica, S. Girdner & R. Truitt, 2007b. Distribution and abundance of zooplankton populations in Crater Lake, Oregon.Google Scholar
  50. Lee, S. & J. A. Fuhrman, 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Applied and Environmental Microbiology 53: 1298–1303.PubMedGoogle Scholar
  51. MacGregor, B. J., D. P. Moser, E. W. Alm, K. H. Nealson & D. A. Stahl, 1997. Crenarchaeota in Lake Michigan sediment. Applied and Environmental Microbiology 63: 1178–1181.PubMedGoogle Scholar
  52. McIntire, C. D., G. L. Larson, R. E. Truitt & M. K. Debacon, 1996. Taxonomic structure and productivity of phytoplankton assemblages in Crater Lake, Oregon. Lake and Reservoir Management 12: 259–280.Google Scholar
  53. McIntire, C. D., G. L. Larson & R. Truitt, this issue. Taxonomic composition and production dynamics of phytoplankton assemblages in Crater Lake, Oregon.Google Scholar
  54. McManus, J., R. W. Collier & J. Dymond, 1993. Mixing processes in Crater Lake, Oregon. Journal of Geophysical Research 98: 295–307.CrossRefGoogle Scholar
  55. McManus, J., R. Collier, J. Dymond, C. G. Wheat & G. L. Larson, 1996. Spatial and temporal distribution of dissolved oxygen in Crater Lake, Oregon. Limnology and Oceanography 41: 722–731.CrossRefGoogle Scholar
  56. Methé, B. A. & J. P. Zehr, 1999. Diversity of bacterial communities in Adirondack lakes: do species assemblages reflect lake water chemistry? Hydrobiologia 401: 77–96.CrossRefGoogle Scholar
  57. Nelson, P. O., J. F. Reilly & G. L. Larson, 1996. Chemical solute mass balance of Crater Lake, Oregon. Lake and Reservoir Management 12: 248–258.CrossRefGoogle Scholar
  58. Nygaard, K. & A. Tobiesen, 1993. Bacterivory in algae—a survival strategy during nutrient limitation. Limnology and Oceanography 38: 273–279.CrossRefGoogle Scholar
  59. Pernthaler, J., T. Posch, K. Simek, J. Vrba, R. Amann & R. Psenner, 1997. Contrasting bacterial strategies to coexist with a flagellate predator in an experimental microbial assemblage. Applied and Environmental Microbiology 63: 596–601.PubMedGoogle Scholar
  60. Peterson, B. J., J. E. Hobbie & J. F. Haney, 1978. Daphnia grazing on natural bacteria. Limnology and Oceanography 23: 1039–1044.CrossRefGoogle Scholar
  61. Polz, M. F. & C. M. Cavanaugh, 1997. A simple method for quantification of uncultured microorganisms in the environment based on in vitro transcription of 16S rRNA. Applied and Environmental Microbiology 63: 1028–1033.PubMedGoogle Scholar
  62. Redfield, A. C., 1958. The biological control of chemical factors in the environment. American Scientist 46: 205–221.Google Scholar
  63. Schiffman, S. S., M. L. Reynolds & F. W. Young, 1981. Introduction to multi-dimensional scaling. Theory, methods and applications. Academic Press, London.Google Scholar
  64. Sekiguchi, Y., H. Takahashi, Y. Kamagata, A. Ohashi & H. Harada, 2001. In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the Green Non-sulfur Bacteria, Subdivision I. Applied and Environmental Microbiology 67: 5740–5749.PubMedCrossRefGoogle Scholar
  65. Semenova, E. A. & K. D. Kuznedelov, 1998. A study of the biodiversity of Baikal picoplankton by comparative analysis of 16S rRNA gene 5′-terminal regions. Molecular Biology 32: 754–760.Google Scholar
  66. Sherr, E. B. & B. F. Sherr, 2002. Significance of predation by protists in aquatic microbial food webs. Antonie van Leeuwenhoek 81: 293–308.PubMedCrossRefGoogle Scholar
  67. Simek, K., P. Kojecka, J. Nedoma, P. Hartman, J. Vrba & J. R. Dolan, 1999. Shifts in bacterial community composition associated with different microzooplankton size fractions in a eutrophic reservoir. Limnology and Oceanography 44: 1634–1644.CrossRefGoogle Scholar
  68. Simek, K., J. Pernthaler, M. G. Weinbauer, K. Hornak, J. R. Dolan, J. Nedoma, M. Masin & R. Amann, 2001. Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Applied and Environmental Microbiology 67: 2723–2733.PubMedCrossRefGoogle Scholar
  69. Sturrock, K. & J. Rocha, 2000. A multidimensional scaling stress evaluation table. Field Methods 12: 49–60.CrossRefGoogle Scholar
  70. Trusova, M. Y. & M. I. Gladyshev, 2002. Phylogenetic diversity of winter bacterioplankton of eutrophic Siberian reservoirs as revealed by 16S rRNA gene sequences. Microbial Ecology 44: 252–259.PubMedCrossRefGoogle Scholar
  71. Urbach, E., K. L. Vergin, L. Young, A. Morse, G. L. Larson & S. J. Giovannoni, 2001. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnology and Oceanography 46: 557–572.CrossRefGoogle Scholar
  72. Wuchter, C., S. Schouten, H. T. S. Boschker & J. S. S. Damste, 2003. Bicarbonate uptake by marine Crenarchaeota. FEMS Microbiology Letters 219: 203–207.PubMedCrossRefGoogle Scholar
  73. Zwart, G., B. C. Crump, M. P. K. V. Agterveld, F. Hagen & S. K. Han, 2002a. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquatic Microbial Ecology 28: 141–155.Google Scholar
  74. Zwart, G., B. C. Crump, M. P. K. V. Agterveld, F. Hagen & S. K. Han, 2002b. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquatic Microbial Ecology 28: 141–155.Google Scholar
  75. Zwisler, W., N. Selje & M. Simon, 2003. Seasonal patterns of the bacterioplankton community composition in a large mesotrophic lake. Aquatic Microbial Ecology 31: 211–225.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Ena Urbach
    • 1
  • Kevin L. Vergin
    • 1
  • Gary L. Larson
    • 2
  • Stephen J. Giovannoni
    • 1
  1. 1.Department of MicrobiologyOregon State UniversityCorvallisUSA
  2. 2.USGS Forest and Rangeland Ecosystem Science CenterCorvallisUSA

Personalised recommendations