BIOCONTROL OF WEEDS WITH ALLELOPATHY: CONVENTIONAL AND TRANSGENIC APPROACHES

  • Stephen O. Duke
  • Scott R. Baerson
  • Agnes M. Rimando
  • Zhiqiang Pan
  • Franck E. Dayan
  • Regina G. Belz
Part of the NATO Security through Science Series book series

Abstract

Growing highly allelopathic crops has the potential to significantly reduce our reliance on synthetic herbicides for weed management. Specific phytotoxins have been found in allelopathic rice, wheat, and rye varieties, but this information has not been used in breeding varieties that can be marketed on the basis of their weed management properties. Although such a conventional approach is viable, transgenic strategies may be better. For example, genes encoding enzymes of the highly potent phytotoxin sorgoleone in Sorghum spp. might be transgenically manipulated to enhance the allelopathic properties of sorghum crops. This potent phytotoxin is exclusively synthesized and secreted by root hairs. The sorgoleone pathway has been elucidated and putative genes encoding them have been identified and partially verified.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Harper, Population Biology in Plants (Academic Press, London, 1977).Google Scholar
  2. 2.
    L. A. Weston, Utilization of allelopathy for weed management in agroecosystems, Agron. J. 88, 860–866 (1996).CrossRefGoogle Scholar
  3. 3.
    L. A. Weston and S. O. Duke, Weed and crop allelopathy, Crit. Rev. Plant Sci. 22, 367–389 (2003).Google Scholar
  4. 4.
    S. O. Duke, R. G. Belz, S. R. Baerson, Z. Pan, D. D. Cook, and F. E. Dayan, The potential for advances in crop allelopathy. Outlook Pest Manag. 16, 64–68 (2005).CrossRefGoogle Scholar
  5. 5.
    J. V. Lovett, A. H. C. Hoult, and O. Christen, Biologically active secondary metabolites of barley, IV: Hordenine production by different barley lines. J. Chem. Ecol. 20, 1945–1954 (1994).CrossRefGoogle Scholar
  6. 6.
    A. R. Putnam and W. B. Duke, Biological suppression of weeds: Evidence for allelopathy in accessions of cucumber. Science 185, 370–373 (1974).CrossRefPubMedGoogle Scholar
  7. 7.
    P. K. Fay and W. B. Duke, An assessment of allelopathic potential in Avena germplasm. Weed Sci. 25, 224–228 (1977).Google Scholar
  8. 8.
    R. H. Dilday, J. D. Mattice, K. A. Moldenhauer, and W. Yan, Allelopathic potential in rice germplasm against ducksalad, redstem and barnyardgrass, J. Crop Prod. 4, 287–301 (2001).CrossRefGoogle Scholar
  9. 9.
    C. Kong, X. Xu, F. Hu, X. Chen, B. Ling, and Z. Tan, Using specific secondary metabolites as markers to evaluate allelopathic potentials of rice varieties and individual plants. Chin. Sci. Bull. 47, 839–843 (2002).CrossRefGoogle Scholar
  10. 10.
    F. J. Pérez and J. Ormeño-Núñez, Difference in hydroxyamic acid content in roots and root exudates of wheat (Triticum aestivum L.) and rye (Secale cereale L.): Possible role in allelopathy. J. Chem. Ecol. 17, 1037–1043 (1991).CrossRefGoogle Scholar
  11. 11.
    M. A. Czarnota, A. M. Rimando, and L. A. Weston, Evaluation of root exudates of seven sorghum accessions, J. Chem. Ecol. 29, 2073–2083 (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    F. A. Macías, R. M. Oliva, R. M. Varela, A. Torres, and J. M. G. Molinollo, Allelopathic studies in cultivar species, 14: Allelochemicals from sunflower leaves cv. Peredovick. Phytochemistry 52, 613–621 (1999).CrossRefGoogle Scholar
  13. 13.
    H. Wu, J. Pratley, D. Lemerle, and T. Haig, Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum) by the equal-compartment-agar-method. Aust. J. Exp. Agric. 51, 937–944 (2000).Google Scholar
  14. 14.
    H. Wu, J. Pratley, D. Lemerle, and T. Haig, Laboratory screening for allelopathic potential of wheat (Triticum aestivum) accessions agains annual ryegrass (Lolium rigidum). Aust. J. Exp. Agric. 51, 259–266 (2000).Google Scholar
  15. 15.
    M. Olofsdotter (Ed.), Allelopathy in Rice (International Rice Research Institute, Manila, Philippines, 1998).Google Scholar
  16. 16.
    L. B. Jenson, B. Courtois, L. Shen, Z. Li, M. Olofsdotter, and R. P. Mauleon, Locating genes controlling allelopathic effects against barnyardgrass in upland rice, Agron. J. 93, 21–26 (2001).CrossRefGoogle Scholar
  17. 17.
    C. Kong, W. Liang, X. Xu, F. Hu, and Y. Jiang, Release and activity of allelochemicals from allelopathic rice seedlings. J. Agric Food Chem. 19, 2861–2865 (2004).CrossRefGoogle Scholar
  18. 18.
    R. S. C. Chavez, D. R. Gealy, and H. L. Black, Reduced propanil rates and naturally suppressive cultivars for barnyardgrass control in drill-seeded rice. In B. R. Wells Rice Res. Studies–1998. Series 468 (Arkansas Agricultural Experimental Station, University of Arkansas, Fayetteville, AR, USA, 1999), pp. 43–50.Google Scholar
  19. 19.
    H. Kato-Noguchi and T. Ino, Release of momilactone B from rice plants. Plant Product Sci. 7, 189–190 (2004)CrossRefGoogle Scholar
  20. 20.
    H. Kato-Noguchi, Allelopathic substance in rice root exudates: Rediscovery of momilactone B as an allelochemical, J. Plant Physiol. 161, 271–276 (2004).PubMedCrossRefGoogle Scholar
  21. 21.
    H. Kato-Noguchi, T. Ino, and M. Ichii, Changes in release of momilactone B into the environment from rice throughout its life cycle, Funct. Plant Biol. 30, 995–997 (2003).CrossRefGoogle Scholar
  22. 22.
    I. M. Chung, M. Ali, A. Ahmad, J. D. Lim, C. Y. Yu, and J. S. Kim, Chemical constituents of rice (Oryza sativa) hulls and their herbicidal activity against duckweed (Lemna paucicostata Hegelm 381), Phytochem. Anal. 17, 36–45 (2006).PubMedCrossRefGoogle Scholar
  23. 23.
    I. M. Chung, J. T. Jung, and S.-H. Kim, Evaluation of allelochemical potential and quantification of momilacton A, B from rice hull extracts and assessment of inhibitory bioactivity on paddy field weeds, J. Agric. Food Chem. 54, 2527–2536 (2006).PubMedCrossRefGoogle Scholar
  24. 24.
    C. Kong, X. Xu, B. Zhou, F. Hu, and C. Zhang, Two compounds from allelopathic rice asccession and their inhibitory activity on weeds and fungal pathogens, Phytochemistry 65, 1123–1128 (2004).PubMedCrossRefGoogle Scholar
  25. 25.
    M. Xu, M. L. Hillwig, S. Prisic, R. M. Coates, and R. J. Peters, Functional identification of rice syn-copalyl diphosphate synthase and its role in initiating biosynthesis of diterpenoid phytoalexin/allelopathic products. Plant J. 39, 309–318Google Scholar
  26. 26.
    M. Xu, S. Prisic, P. R. Wilderman, Y. Jin, R. M. Coates, and R. J. Peters, Elucidating biosynthesis of the rice allelochemical/phytoalexin momilacton B, in Proceedings of the 4th World Congress on Allellopathy (Regional Institute Ltd., Gosford, Australia), pp. 218–222 (2005).Google Scholar
  27. 27.
    H. Kato-Noguchi and T. Ino, Concentration and release level of momilacton B in the seedlings of eight rice cultivars, J. Plant Physiol. 162, 965–969 (2005).PubMedGoogle Scholar
  28. 28.
    R. G. Belz and K. Hurle, Differential exudation of two benzoxazinoids—One of the determining factors for seedling allelopathy of Triticeae species, J. Agric. Food Chem. 53, 250–261 (2005).PubMedCrossRefGoogle Scholar
  29. 29.
    F. J Pérez and J. Ormeño-Núñez, Difference in hydroxamic acid content in roots and root exudates of wheat (Triticum aestivum L.) and rye (Secale cereale L.): Possible role in allelopathy, J. Chem. Ecol. 17, 1037–1043 (1991).CrossRefGoogle Scholar
  30. 30.
    M. Quader, G. Daggard, R. Barrow, S. Walker, and M.W. Sutherland, Allelopathy, DIMBOA production and genetic variability in accessions of Triticum speltoides, J. Chem. Ecol. 27, 747–760 (2001).PubMedCrossRefGoogle Scholar
  31. 31.
    I. S. Fomsgaard, Chemical ecology in wheat plant—Pest interactions. How the use of modern techniques and a multidisciplinary approach can throw new light on a well-known phenomenon: Allelopathy, J. Agric. Food Chem. 54, 987–990 (2006).PubMedCrossRefGoogle Scholar
  32. 32.
    H. Wu, J. Pratley, W. Ma, and T. Haig, Quantitative trait loci and molecular markers associated with wheat allelopathy, Theor. Appl. Genet. 107, 1477–1481 (2003).PubMedCrossRefGoogle Scholar
  33. 33.
    H. Wu, J. Pratley, D. Lemerle, and M. An, Biochemical basis for wheat seedling allelopathy on the suppression of annual ryegrass, (Lolium rigidum), J. Agric. Food Chem. 50, 4567–4571 (2002).PubMedCrossRefGoogle Scholar
  34. 34.
    Z. Huang, T. Haig, H. Wu, M. An, and J. Pratley, Correlation between phytotoxicity on annual ryegrass (Lolium rigidum) and production dynamics of allelochemicals within root exudates of an allelopathic wheat, J. Chem. Ecol. 29, 2263–2279 (2003).PubMedCrossRefGoogle Scholar
  35. 35.
    J. Chunghong, P. Kudsk, and S. K. Mathiassen, Joint action of benzoxazinone derivatives and phenolic acids, J. Agric. Food Chem. 54, 1049–1057 (2006).CrossRefGoogle Scholar
  36. 36.
    R. W. Gagliardo and W. S. Chilton, Soil transformation of 2(3H)-benzoxazolone of rye into phytotoxic 2-amino-3H-phenoxazin-3-one, J. Chem. Ecol. 18, 1683–1691 (1992).Google Scholar
  37. 37.
    F. A. Macías, D. Marín, A. Oliveros-Bastidas, D. Castellano, A. M. Simonet, and J. M. G. Molinollo, Structure-activity relationship (SAR studies of benzazinones, their degradation products, and analogues). Phytoxicity on problematic weeds Avena fatua L. and Lolium regidum Gaud., J. Agric. Food Chem. 54, 1040–1048 (2006).PubMedCrossRefGoogle Scholar
  38. 38.
    T. Nomura, A. Ishihara, H. Imaishi, T. R. Endo, H. Ohkawa, and H. Iwamura, Molecular characterization and chromosomal location of cytochrome P450 genes involved in the biosythesis of cyclic hydroxyamic acids in hexaploid wheat, Molec. Genet. Genomics 267, 210–217.Google Scholar
  39. 39.
    T. Nomura, A. Ishihara, H. Imaishi, H. Ohkawa, T. R. Endo, and H. Iwamura, Rearrangement of the genes for the biosynthesis of benzoxazinones in the evolution of Triticeae species, Planta 217, 776–782.Google Scholar
  40. 40.
    S. O. Duke, S. R. Baerson, F. E. Dayan, I. A. Kagan, A. Michel, and B. E. Scheffler, Biocontrol of weeds without the biocontrol agent, in Enhancing Biocontrol Agents and Handling Risks, edited by M. Vurro, J. Gressel, T. Butt, G. E. Harmon, A. Pilgeram, R. J. St. Leger, and D. L. Nuss (IOS Press, Amsterdam, 2001), pp. 96–105.Google Scholar
  41. 41.
    D. H. Netzly and L. G. Butler, Roots of sorghum exude hydrophobic droplets containing biologically active components. Crop Sci. 26, 775–778 (1986).CrossRefGoogle Scholar
  42. 42.
    G. D. Fate and D. G. Lynn, Xenognosin methylation is critical in defining the chemical potential gradient that regulates the spatial distribution in striga pathogenesis. J. Am. Chem. Soc. 118, 11369–11376 (1996).CrossRefGoogle Scholar
  43. 43.
    F. E. Dayan, I. A. Kagan, and A. M. Rimando, Elucidation of the biosynthetic pathway of the allelochemical sorgoleone using retrobiosynthetic NMR analysis, J. Biol. Chem. 278, 28607–28611 (2003)PubMedCrossRefGoogle Scholar
  44. 44.
    M. A. Czarnota, R. N. Paul, L. A. Weston, and S. O. Duke, Anatomy of sorgoleone-secreting root hairs of Sorghum species. Int. J. Plant Sci. 164, 861–866 (2003)CrossRefGoogle Scholar
  45. 45.
    I. A. Kagan, A. M. Rimando, and F. E. Dayan, Chromatographic separation and in vitro activity of sorgoleone congeners from the roots of Sorghum bicolor, J. Agric. Food Chem. 51, 7589–7595.Google Scholar
  46. 46.
    A. M. Rimando, F. E. Dayan, M. A. Czarnota, L. A. Weston, and S. O. Duke, A new photosystem II electron transfer inhibitor from Sorghum bicolor, J. Nat. Prod. 61, 972–930 (1998).Google Scholar
  47. 47.
    F. A. Einhellig and I. F. Souza, Phytotoxicity of sorgoleone found in grain sorghum root exudates, J. Chem. Ecol. 18, 1–11 (1992).CrossRefGoogle Scholar
  48. 48.
    F. A. Einhellig, J. A. Rasmussen, A. M. Hejl, and I. F. Souza, Effects of root exudate sorgoleone on photosynthesis, J. Chem.Ecol. 19, 369–375 (1993).CrossRefGoogle Scholar
  49. 49.
    V. M. Gonzalez, J. Kazmir, C. Nimbal, L. A. Weston, and G. M. Cheniae, Inhibition of photosystem II electron transfer reaction by the natural product sorgoleone, J. Agric. Food Chem. 45, 1415–1421 (1997).CrossRefGoogle Scholar
  50. 50.
    J. A. Rasmussen, A. M. Hejl, F. A. Einhellig, and J. A. Thomas, Sorgoleone from root exudates inhibits mitochondrial functions, J. Chem. Ecol. 18, 197–207 (1992).CrossRefGoogle Scholar
  51. 51.
    G. Meazza, B. E. Scheffler, M. R. Tellez, A. M. Rimando, N. P. D. Nanayakkara, I. A. Khan, E. A. Abourashed, J. G. Romagni, S. O. Duke, and F. E. Dayan, The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase, Phytochemistry 59, 281–288 (2002).CrossRefGoogle Scholar
  52. 52.
    I. Guterman, M. Shalit, N. Menda, D. Piestun, M. Dafny-Yelin, G. Shalev, E. Bar, O. Davydov, M. Ovadis, M. Emanuel, J. Wang, Z. Adam, E. Pichersky, E. Lewinsohn, D. Zamir, A. Vainstein, and D. Weiss, Rose scent genomics approach to discovering novel floral fragrance-related genes, Plant Cell 14, 2325–2338 2002).PubMedCrossRefGoogle Scholar
  53. 53.
    B. M. Lange, M. R. Wildung, E. J. Stauber, C. Sanchez, D. Pouchnik, and R. Croteau, Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequesnce tags from mint trichomes, Proc. Natl. Acad. Sci. USA 97, 2934–2939.Google Scholar
  54. 54.
    S. R. Baerson, F. E. Dayan, A. M. Rimando, Z. Pan, D. Cook, N. P. D. Nanayakkara, and S. O. Duke, A functional genomics approach for the identification of genes involved in the bioysnthesis of the allelochemical sorgoleone, Am. Chem. Soc. Symp. Ser. 927, 265–276 (2006).Google Scholar
  55. 55.
    Dayan, F. E., D. Cook, S. R. Baerson, and A. M. Rimando, Manipulating the lipid resorcinol pathway to enhance allelopathy in rice, in Proceedings of the 4th World Congress on Allelopathy (Regional Institute Ltd., Gosford, Australia, 2005), pp. 96–105.Google Scholar
  56. 56.
    P. Mercke, I. F. Kappers, F. W. Verstappen, O. Vorst, M. Dicke, and H. J. Bouwmeester, Combined transcript and metabolite analysis reveals genes involved in spider mite induced volatile formation in cucumber plants. Plant Physiol. 135, 2012–2024 (2004).PubMedCrossRefGoogle Scholar
  57. 57.
    R. Niwa, T. Matsuda, T. Yoshiyama, T. Namiki, K. Mita, Y. Fujimoto, and H. Kataoka, CYP306A1, a cytochrome P450 enzyme, is essential for ecdysteroid biosynthesis in the prothoracic glands of Bombyx and Drosophila. J. Biol. Chem. 279, 35942–35949 (2004)PubMedCrossRefGoogle Scholar
  58. 58.
    J. Gressel, Molecular Biology of Weed Control (Taylor & Francis, London, 2002), 504 pp.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Stephen O. Duke
    • 1
  • Scott R. Baerson
    • 1
  • Agnes M. Rimando
    • 1
  • Zhiqiang Pan
    • 1
  • Franck E. Dayan
    • 1
  • Regina G. Belz
    • 2
  1. 1.USDA, ARSNatural Products Utilization Research UnitUSA
  2. 2.Institute of Phytomedicine 360, Department of Weed ScienceUniversity of HohenheimStuttgartGermany

Personalised recommendations