• Brian A. Federici
Part of the NATO Security through Science Series book series


Pathogens of insects have been under evaluation as biological control agents for more than a century. With few exceptions, they are not effective as classical biological control agents. Moreover, even as insecticides, only Bacillus thuringiensis (Bt) has been a commercial success. Bt’s success, in essence, is due to its ease of mass production by fermentation on inexpensive media, which facilitated commercialization. Viruses, fungi, and protozoa are used in only a few niche markets, and thus have largely failed as microbial insecticides, and will continue to fail until more efficacious mass production methods are developed. Despite these failures, research on insect pathogens led to the development of transgenic insect-tolerant Bt crops, arguably the most important advance in pest control technology of the latter half of the 20th century. Numerous laboratory and field studies have shown that these crops are cost-effective and much safer than synthetic chemical insecticides for the environment and non-target organisms. The high specificity of Bt crops provides a new cornerstone for biological control and sustainable agriculture that will enable both to expand during this century.


Biological Control Agent Bacillus Thuringiensis European Corn Borer Classical Biological Control Insect Pathogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. A. Federici, in Handbook of Biological Control, edited by T. S. Bellows and T. W. Fisher (Academic Press, San Diego, 1999), pp 517–548.Google Scholar
  2. 2.
    F. Moscardi, Assessment of the application of baculoviruses for control of Lepidoptera. Annu. Rev. Entomol. 44, 257–289 (1999).PubMedCrossRefGoogle Scholar
  3. 3.
    R. E. Balch and F. T. Bird, A disease of the European spruce sawfly, Gilpinia hercyniae [Htg.] and its place in natural control. Sci. Agricult. 25, 65–80.Google Scholar
  4. 4.
    R. M. Weseloh, Entomophaga maimaiga (Zygomycetes; Entomophthorales) resting spores and biological control of the gypsy moth, Lymantira dispar (Lepidoptera; Lymantriidae). Environ. Entomol. 28, 1162–1171 (1999).Google Scholar
  5. 5.
    V. M. Stern and B. A. Federici, Granulosis virus: Biological control of the grapeleaf skeletonizer. Calif. Agricult. 44, 21–22 (1990).Google Scholar
  6. 6.
    B. A. Federici, Insecticidal bacteria: An overwhelming success for invertebrate pathology. J. Invertebr. Pathol. 89, 30–38.Google Scholar
  7. 7.
    M. G. Feng, T. J. Poprawski, and G. G. Khachatourians, Production, formulation and application of the entomophathogenic fungus Beauveria bassiana for insect control. Biocontr. Sci. Technol. 4, 3–34 (1994).CrossRefGoogle Scholar
  8. 8.
    T. R. Glare and M. O’Callaghan. Bacillus thuringiensis: Biology, Ecology and Safety (Wiley, Chichester, UK, 2000).Google Scholar
  9. 9.
    B. A. Federici, in Handbook of Biological Control, edited by T. S. Bellows and T. W. Fisher (Academic Press, San Diego, CA, 1999), pp. 575–593.Google Scholar
  10. 10.
    E. Schnepf, N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler, and D. H. Dean, Bacillus thuringiensis and its pesticidal proteins. Microbiol. Mol. Biol. Rev. 62, 775–806 (1998).PubMedGoogle Scholar
  11. 11.
    J.-F. Charles, C. Nielsen-LeRoux, and A. Delecluse, Bacillus sphaericus toxins: Molecular biology and mode of action. Ann. Rev. Entomol. 41, 451–472 (1996).CrossRefGoogle Scholar
  12. 12.
    T. A. Jackson, J. F. Pearson, M. O. O’Callaghan, H. K. Mahanty, and M. J. Willocks, in Use of Pathogens in Scarab Pest Management, edited by T. A. Jackson and T. R. Glare (Andover, Intercept. Andover, 1992) pp. 191–198.Google Scholar
  13. 13.
    R. de Maagd, A. Bravo, C. Berry, N. Crickmore, and H. E. Schnepf, Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Ann. Rev. Genet. 37, 409–433 (2003).PubMedCrossRefGoogle Scholar
  14. 14.
    H. Agaisse and D. Lereclus, STAB-SD: A Shine-Dalgarno sequence in the 5′ untranslated region is a determinant of mRNA stability. Mol. Microbiol. 20, 633–643 (1996).PubMedCrossRefGoogle Scholar
  15. 15.
    H.-W. Park, B. Ge, L. S. Bauer, and B. A. Federici, Optimization of Cry3A yields in Bacillus thuringiensis by use of sporulation-dependent promoters in combination with the STAB-SD mRNA sequence. Appl. Environ. Microbiol. 64, 3932–3938 (1998).PubMedGoogle Scholar
  16. 16.
    B. A. Federici, H.-W. Park, D. K. Bideshi, M. C. Wirth, and J. J. Johnson, Recombinant bacteria for mosquito control. J. Exp. Biol. 206, 3877–3885 (2003).PubMedCrossRefGoogle Scholar
  17. 17.
    H.-W. Park, D. K. Bideshi, M. C. Wirth, J. J. Johnson, W. E. Walton, and B. A. Federici, Recombinant larvicidal bacteria with markedly improved efficacy against Culex vectors of West Nile Virus. Am. J. Trop. Med. Hyg. 72, 732–738 (2005).PubMedGoogle Scholar
  18. 18.
    J. S. Griffiths, S. M. Haslam, T. Yang, S. F. Garczynski, B. Mulloy, H. Morris, P. S. Cremer, A. Dell, M. J. Adang, and R. V. Aroian, Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 5711, 922–925 (2005).CrossRefGoogle Scholar
  19. 19.
    F. S. Betz, S. F. Forsyth, and W. E. Stewart, in Safety if Microbial Insecticides, edited by M. Laird, L. A. Lacey, and E. W. Davidson (CRC Press, Boca Raton, FL, 1990), pp. 3–10.Google Scholar
  20. 20.
    B. A. Federici, Effects of Bt on non-target organisms. J. New Seeds 5, 11–30 (2003).CrossRefGoogle Scholar
  21. 21.
    K. Petrie, M. Thomas, and E. Broadbent, Symptom complaints following aerial spraying with the biological insecticide Foray 48B. New Zealand Med. J. 116, 1–7 (2003).Google Scholar
  22. 22.
    V. de Amorim, B. Whittome, B. Shore, and D. B. Levin, Identification of Bacillus thuringiensis subsp. kurstaki strain HD1-like bacteria from environmental and human samples after aerial spraying of Victoria, British Columbia, Canada, with Foray 48B. Appl. Environ. Microbiol. 67, 1035–1043 (2001).CrossRefGoogle Scholar
  23. 23.
    W. R. Snodgrass, in Handbook of Pesticide Toxicology, edited by R. Krieger (Academic Press, San Diego, CA, 2001), pp. 589–602.Google Scholar
  24. 24.
    G. M. Calvert, W. T. Sanderson, M. Barnett, J. M. Blondell, and L. N. Mehler, in Handbook of Pesticide Toxicology, edited by R. Krieger (Academic Press, San Diego, CA, 2001), pp. 603–641.Google Scholar
  25. 25.
    J. P. Siegel, The mammalian safety of Bacillus thuringiensis-based insecticides. J. Invertebr. Pathol. 77, 13–21 (2001).PubMedCrossRefGoogle Scholar
  26. 26.
    F. S. Betz, B. G. Hammond, and R. L. Fuchs, Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Reg. Tox. Pharmacol. 32, 156–173 (2000).CrossRefGoogle Scholar
  27. 27.
    A. Hilbeck, W. J. Moar, M. Pustai-Carey, A. Filippini, and F. Bigler, Toxicity of Bacillus thuringeinsis Cry1A(b) toxin to the predator Chrysoperla carnea (Neuroptera: Chrysopidae). Environ. Entomol. 27, 1255–1263 (1998).Google Scholar
  28. 28.
    J. J. Losey, L. Raynor, and M. E. Cater, Transgenic pollen harms monarch larvae. Nature 399, 214 (1999).PubMedCrossRefGoogle Scholar
  29. 29.
    J. Romeis, A. Dutton, and F. Bigler, Bacillus thuringeinsis toxin (Cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Neuroptera: Chrysopidae). J. Insect Physiol. 50, 175–183 (2004).PubMedCrossRefGoogle Scholar
  30. 30.
    M. K. Sears, R. L. Helmich, D. E. Stanley-Horn, K. S. Oberhauser, J. M. Pleasants, H. R. Mattila, S. D. Siegfried, and G. P. Dively, Impact of Bt corn pollen on monarch butterfly populations: A risk assessment. Proc. Natl. Acad. Sci. USA 98, 11937–11942 (2001).PubMedCrossRefGoogle Scholar
  31. 31.
    M. O’Callaghan, T. R. Glare, E. P. J. Burgess, and L. A. Malone. 2005. Effects of plants genetically modified for insect resistance on nontarget organisms. Annu. Rev. Entomol. 50, 271–292.PubMedCrossRefGoogle Scholar
  32. 32.
    S. Naranjo, Long-term assessment of the effects of transgenic Bt cotton on the abundance of the nontarget natural enemy community. Environ. Entomol. 34, 1193–1210 (2005).CrossRefGoogle Scholar
  33. 33.
    M. E. A. Whitehouse, L. J. Wilson, and G. P. Fitt, A comparison of arthropod communities in transgenic Bt and conventional cotton in Australia. Environ. Entomol. 34, 1224–1241 (2005).CrossRefGoogle Scholar
  34. 34.
    G. Head, W. Moar, M. Eubanks, B. Freeman, J. Ruberson, A. Hagerty, and S. Turnipseed, A multiyear, large-scale comparison of Arthropod populations on commercially managed Bt and non-Bt cotton fields. Environ. Entomol. 34, 1257–1266 (2005).CrossRefGoogle Scholar
  35. 35.
    G. P. Dively, Impact of transgenic VIP3A X Cry1Ab lepidopterna-resistant field corn on the nontarget arthropod community, Environ. Entomol. 34, 1267–1291 (2005).CrossRefGoogle Scholar
  36. 36.
    M. A. Bhatti, J. Duan, G. Head, C. Jiang, M. J. McKee, T. E. Nickson, C. L. Pilcher, and C. D. Pilcher, Field evaluation of the impact of corn rootworm (Coleoptera: Chrysomelidae)-protected Bt corn on ground dwelling invertebrates. Environ. Entomol. 34, 1325–1335 (2005).CrossRefGoogle Scholar
  37. 37.
    M. A. Bhatti, J. Duan, G. Head, C. Jiang, M. J. McKee, T. E. Nickson, C. L. Pilcher, and C. D. Pilcher, Field evaluation of the impact of corn rootworm (Coleoptera: Chrysomelidae)-protected Bt corn on foliage-dwelling arthropods, Environ. Entomol. 34, 1336–1345 (2005).CrossRefGoogle Scholar
  38. 38.
    D. A. Andow and A. Hilbeck, A science-based risk assessment for non-target effects of transgenic crops. Bioscience 54, 637–649 (2004).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Brian A. Federici
    • 1
  1. 1.Department of Entomology and Graduate Programs in Molecular BiologyUniversity of CaliforniaRiversideUSA

Personalised recommendations