Advertisement

Establishing A Speleothem Chronology For Southwestern Oregon

Climatic Controls And Growth Modelling
  • Steven C. Turgeon
  • Joyce Lundberg

Cave calcites from Oregan Caves National Monument (OCNM), a dissolutinal Cave system located in the Klamath Mountains of southwest Oregan, are shown to reflect golobal paleoclimates. Given the high cost of obtaining numerous U-series dates and that many record lie beyond the range of the U-Th dating method (~500 ka), we have explored a technique for modelling the growth of speleothems both between dates and beyond 500 ka using theoretical and empirical growth data applied to OCNM speleothems.

Keywords

Thermal Ionisation Mass Spectrometry Growth Interval Water Film Thickness Klamath Mountain Natural Entrance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11. References

  1. Baker, A., Genty, D., Dreybiodt, W., Barnes, W.L, Mockler, N.J., and Grapes, J., 1998, Testing theoretically predicted stalagmite growth rate with recent annually laminated samples: Implications for past stalagmite deposition, Geochimica et Cosmochimica Acta, 62:393-404.CrossRefGoogle Scholar
  2. Baker, A., and Smart, P.L., 1995, Recent flowatone growth rate: Fteld measurements in comparison to theoretical predictions, Chemical Geology, 122:121-129.CrossRefGoogle Scholar
  3. Baker, A., Genty, D., and Baines, W.L, 1996, Recent Stalagmite Growth Rates: Cave Measurements. Theoretical Predictions and the Environmental Record, in: Climate Change: The Karst Record. Karst Waters Institute Special Publication, no 2, pp. 7-9.Google Scholar
  4. Baker, A., Smart, P.L, and Ford, D.C., 1993, Northwest European palaeoclimate as indicated by growth frequency variations of secondary calcite deposits, Palacogeogiaphy, Palaeoclimatology, Palaeoecology, 100: 291-301.CrossRefGoogle Scholar
  5. Baker, A., Proctor, C.J., and Barnes, W.L. 1999, Variations in stalagmite luminescence laminae structure at Poole's Cavern, England, ad1910-1996: calibration of a palaeoprecipitation proxy, The Holocene, 9: 683-688.CrossRefGoogle Scholar
  6. Bar-Matthews, M., Ayalon, A., Matthews, A., Sass, E., and Halicz, L, 1996, Carbon and oxygen isotope study of the active water-carbonate system in a karstic mediterranean cave: implications for paleoclimate research in semiarid regions, Geochimica et Cosmochimica Acts, 60: 337-349.CrossRefGoogle Scholar
  7. Berger, A., and Loutre, M.F., 1991, Insulation values for the climate of the last 10 million years, Quaternary Science Research, 10: 297-317.CrossRefGoogle Scholar
  8. Blackwell, B., and Schwarcz, H.P., 1995, The Uranium Series Disequilibrium Dating Methods, in: Dating methods for Quaternary deposits, Rutter, N.W., and Catto, N.R., eds., Geological Association of Canada GEOtext 2, pp. 167-208.Google Scholar
  9. Boggs, Jr., S., 1987, Principles of Sedimentology and Stratigraphy, Merrill, Columbus, 784 p.Google Scholar
  10. Bradley, R.S., 1999, Paleoclimatology: Reconstructing Climates of the Quaternary (2°d edition), Academic Press, San Diego, 610 p.Google Scholar
  11. Buhmann, D., and Dreybrodt, W., 1985a, The kinetics of calcite dissolution and precipitation in geologically relevant situations of karat areas - 1. Open System, Chemical Geology, 48:189-21.Google Scholar
  12. Buhmann, D., and Dreybrodt, W., 1985b, The kinetics of calcite dissolution and precipitation in geologically relevant situations of karat areas - 2. Closed System, Chemical Geology, 53: 109-124.Google Scholar
  13. Chappellaz, J., and Jouzel, J., 1992, Vostok lee Core Data Set: IGBP PAGES/World Data Center-A for Paleocimatology, Data Contribution Series 92-018.Google Scholar
  14. Chen, J.H., Curran, H.A., White, B., and Wasserburg, G.J., 1991, Precise chronology of the last interglacial period: 134U- Im data from fossil coral reefs in the Bahamas, Geological Society of America Bulletin, 103: 82-97.CrossRefGoogle Scholar
  15. Colman, S.M., and Pierce, K.L, 1992, Varied records of early Wisconsinan alpine glaciation in the western United States derived from weathering-rind thickness, in: The Last Interglacial-Glacial Transition in North America, Clark, P.U. and Lea, P.D., eds., Geological Society of America Special Paper no 270, pp, 269-278.Google Scholar
  16. Dansgaard, W., 1964, Stable isotopes in precipitation, Tellus, 16: 436-468.CrossRefGoogle Scholar
  17. Dickson, J.A.D., 1978, length-slow and length-fast calcite: A We of two elongations, Geology, 6: 560-561.Google Scholar
  18. Dorale, J.A., Gonzalez, L.A., Reagan, M.IC, Pickett, D.A., Muriel, M.T., and Backer, R.G., 1992. A high resolution record of Holocene climate change in speleothem calcite from Cold Water Cave, northeast Iowa, Science, 258: 1626-1630.CrossRefGoogle Scholar
  19. Dorale, J.A., Edwards, R.L., Gonzalez, L., and Ito, E. 1998, Climate and vegetation history of the midcontinent from 75 to 25 ka: a speleothem record from Crevice Cave, Missouri, USA, Science, 282: 1871-1874.Google Scholar
  20. Drake, J.J., 1980, The effect of soil activity on the chemistry of carbonate groundwaters, Water Resources Research, 16: 381-386.CrossRefGoogle Scholar
  21. Drake, JJ., 1983, The effects of geomorphology and seasonality on the chemistry of carbonate groundwater, Journal of Hydrology, 61: 223-236.CrossRefGoogle Scholar
  22. Drake, JJ., and Ford, D.C., 1981, Karst solution: a global model for groundwater solute concentrations, Proceedings of the Japanese Geomorphological Union, 2: 223-230.Google Scholar
  23. Drake, J.J., and Wigley, T.M.L, 1975, The effect of climate on the chemistry of carbonate groundwater, Water Resources Research, 11: 958-962.CrossRefGoogle Scholar
  24. Dreybrodt, W., 1980, Deposition of calcite from thin films of water of natural calcareous solutions and the growth of speleothems, Chemical Geology, 29: 80-105.CrossRefGoogle Scholar
  25. Dreybrodt, W.,1988, Processes in Karst Systems - Physics, Chemistry and Geology: Springer Series in Physical Environments 5, Springer, Berlin, 288 p.Google Scholar
  26. Dreybrodt, W., 1996, Chemical Kinetics, Spelcothem Growth and Climate, in; Climate Change: The Karst Record, Karst Waters Institute Special Publication, no 2, pp. 33-34.Google Scholar
  27. Dreybrod, W., 1999, Chemical kinetics, speleothem growth and climate, Boreas, 28: 347-356.CrossRefGoogle Scholar
  28. Dreybrodt, W., and Buhmann, D., 1987, A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion, Chemical Geology, 90: 107-122.CrossRefGoogle Scholar
  29. Dreybmdt, W., and Franke, H.W., 1987, Wachstumsgeschwindikeit and Durchmesser von Keczenstalagmites, Die Hohle, 38: 1-6.Google Scholar
  30. Drcybrodt, W., Eisenlohr, L., Madry, B., and Ringer, S., 1997, Precipitation kinetics of calcite in the system: the conversion to C02 by the slow process H' + HCO3 -* CO2 + H2O as a rate limiting step, Geochimica at Cosmochimica Acta, 60: 3897-3904.CrossRefGoogle Scholar
  31. Dublyansky, Y.V., 1995, Speleogenetic history of the Hungarian hydrothermal karst, Environmental Geology, 25: 24-36.CrossRefGoogle Scholar
  32. Edwards, R. L., Chen, J. H., and Wasserburg, G. L. 1986, A73AU 234U-23o.1.h-212Th systematics and the precise measurement of time over the past 500,000 years, Earth and Planetary Science Letters, 81: 175-192.Google Scholar
  33. Hniliani, C., and Shackleton, N.J., 1974, The Bnmhes epoch: Isotopic paleotemperatures and geochronology. Science, 183:511-514.CrossRefGoogle Scholar
  34. Ek, C., and Gewelt, M., 1985, Carbon dioxide in cave atmospheres. New results in Belgium and comparison with other countries, Earth Surface Processes and Landforms, 10: 173-187.Google Scholar
  35. Folk, R.L, and Assereto, R., 1976, Comparative fabrics of length-slow and length-fast calcite and calcitized aragonite in a Holocene speleothern, Carlsbad Caverns, New Mexico, Journal of Sedimentary Petrology, 46:486-496.Google Scholar
  36. Ford, D.C., and Williams, P.W., 1989, Karst Geomorphology and Hydrology, Unwin Hyman, London, 601 p.Google Scholar
  37. Gallup, C.D., Edwards, R.L., and Johnson, R.G., 1994, The Thing of High Sea Levels Over the Past 200,000 Years, Science, 263: 796-800.CrossRefGoogle Scholar
  38. Garrels, R.M., and Christ, C.L., 1965, Solutions. Minerals and Equilibria (2' edition), Harper and Row, New York, 450 p.Google Scholar
  39. Gascoyne, M., 1992, Palaeoclimate determination from cave calcite deposits, Quaternary Science Reviews, 11: 609-632.CrossRefGoogle Scholar
  40. Gascoyne, M., Schwarcz, H.P., and Ford, D.C., 1983, Uranium-series ages of speleothem from northwest England: correlation with Quaternary climate, Philosophical Transactions of the Royal Society of London, 301: 143-164.CrossRefGoogle Scholar
  41. Genty, D., Baker, A., and Barnes, W.L, 1997, Comparaison entre les laminds luminescents et les laminds visibles annuals de stalagmites: Comptes Rendus de IAcaddmie des Sciences, S6rie 17, Fascicule A -Sciences de le Terre at des PlanZtes, 325: 193-200.Google Scholar
  42. Gordon, D., Smart, P., Ford, D.C., Andrews, J.N., Atkinson, T., Rowe, P.J., and Christopher, N.S., 1989, Dating of late Pleistocene interglacial and interstadial periods in the United Kingdom from speleothem growth frequency, Quaternary Research, 31: 14-26.CrossRefGoogle Scholar
  43. Grootes, P.M., Stuiver, M., white, J.W.C., Johnsen, S., and Jouzel, J., 1993, Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores, Nature, 366: 552-554.CrossRefGoogle Scholar
  44. Hellstrom, J., McCulloch, M., and Stone, J., 1998, A detailed 31,000-year record of climate and vegetation change, from the isotope geochemistry of two New Zealand speleothems, Quaternary Research, 50: 167-178.CrossRefGoogle Scholar
  45. Hendy, C.H., 1971, The isotopic geochemistry of speleothems 1. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators, Geochimica at Cosmochimica Acta, 35: 801-824.CrossRefGoogle Scholar
  46. Heusser, C.J., and Heusser, LE., 1990, Long continental pollen sequence from Washington State (U.S.A.): correlation of upper levels with marine pollen-oxygen isotope stratigraphy through substage5e, Palaeogeagraphy, Palaeoclimatology, Palaeoecology, 79: 63-71.CrossRefGoogle Scholar
  47. Hill, C., and Forti, R.1997, Cave Minerals of the World (2d Edition), National Speleological Society, Huntsville, 463 p.Google Scholar
  48. Holland, H.D., Kirsipu, T.W., Huebner, J.S., and Oxburgh, U.M., 1964, On some aspects of the chemical evolution of cave waters, Journal of Geology, 72: 36-67.CrossRefGoogle Scholar
  49. Imbric, J, Hays, J.D, Martinson, D.G., McIntyre, A., Mix, A-C., Morley, J.J., Pisias, N.G., Prell, W.L. and Shackleton, J.H., 1984, The orbital theory of Pleistocene climate: Support from a revised chronology of the marine 6180 record, in: Milankovitch and Climate, Part 1: NATO ASI Series, Series C, Berger, A., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B., ads., Mathematical and Physical Sciences, 126, Reidel, Rotterdam, pp. 269-305.Google Scholar
  50. Johnsen, S.J., Clausen, H.B., Dansgaard, W., Fuhrer, K., Gundestrup, N., Hammer, C.U., Iversen, P., Jouzel, J., Stauffer, B., and Steffensen, J.P., 1993, Greenland [ce Core Project Summit Core 180. IGBP PAGES/World Data Center-A for Paleoclimatology, Data Contribution Series 93-033.Google Scholar
  51. Kaufman, A., and Broecker, W.S., 1965, Comparison of Th23O and C14 ages for carbonate materials from Lakes Laltontan and Bonneville, Journal of Geophysical Research, 70:4039-4054.CrossRefGoogle Scholar
  52. Kendall, A.C., and Broughton, P.L, 1978, Origin of fabrics in speleothems composed of columnar calcite crystals, Journal of Sedimentary Petrology, 48: 519-538.Google Scholar
  53. Lauritzen, S.E., 1995, High-Resolution Paleotemperature Proxy Record for the Last Interglaciation Based on Norwegian Speleothems, Quaternary Research, 43: 133-146.CrossRefGoogle Scholar
  54. Lauritzen, S.E., and Lundberg, J., in press, isotope Stage 11, the "Super-interglacial", from a North Norwegian Speleothem, in: Studies of cave sediments, Sasowsky, L, and Mylroie, J., eds., this volume. Lauritzen, S: E., and Lundberg, I., 1999a, Speleothems and climate: a special issue of The Holocene, The Holocene, 9: 643-647.Google Scholar
  55. Lauritzen, S.E., and Lundberg, J., 1999b, Calibration of the speleothem delta function: an absolute temperature record for the Holocene in northern Norway, The Holocene, 9: 659-669.CrossRefGoogle Scholar
  56. linge, H., 1999, Isotopic studies of some northern Norwegian speleothems and calcareous algae from Svalbard, Ph.D. Thesis, University of Bergen, Bergen, Norway.Google Scholar
  57. Lohman, K.C., 1988, Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst, in: Paleokarst, James, N.P. and Choquette, P.W., eds., Springer-Verfag, New York, pp. 58-80.Google Scholar
  58. Lundberg, J., 1997, Paleoclimatic reconstruction and timing of sea level rise at the end of the Penultimate Glaciation, from detailed stable isotope study and TIMS dating of submerged Bahamian speleothem, in: Proceedings, International Congress of Speleology, 12th, Neuchatel. Switzedand.Google Scholar
  59. Lundberg, J.,1999. Uranium series dating on Finnigan-Mat (2"6 edition), University of Bergen. Geology Department, Internal report.Google Scholar
  60. Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., Jr. and Shackleton, N.J., 1987, Age dating and the orbital theory of the ice ages-Development of a high-resolution0to300,000-year chronostratigraphy, Quaternary Research, 27: 1-29.CrossRefGoogle Scholar
  61. Meese, D., Alley, R., Gow, T., Grooms, P.M., Mayewski. P., Ram. M., Taylor. K, Waddington, E., and Zielinski, G., 1994, Preliminary depth-age scale of the GISP2 ice core: CRREL Special Report 94-1.Google Scholar
  62. Miotke, F: D., 1974, Carbon dioxide and the soil atmosphere. Abhandlungen Karst-u. Hohlenkunde, A9, Munich, 52 p.Google Scholar
  63. Plummer, -N., Wigley, T.L.M., and Parkhurst, D.L., 1978, The kinetics of calcite dissolution on COrwater systems at 5°C to 60°C and 0.0 to 1.0 atm CO2, American Journal of Science, 278: 537-573.Google Scholar
  64. Porter, S.C., 1977, Present and past glaciation threshold in the Cascade Range, Washington, U.S.A.-Topographic and climatic controls, and paleoclimatic implications, Journal of Glaciology, l8: 101-116.Google Scholar
  65. Porter, S.C., Pierce, K.L., and Hamilton, T.D., 1983, Late Wisconsin mountain glaciation in the western United States, in: Late Quaternary environments of the United States, v. 1, The Late Pleistocene. Porter, S.C., ed., University of Minnesota Press, Minneapolis, pp. 71-114.Google Scholar
  66. Rightrnire, C.T,, 1978, Seasonal Variation in P,:o2 and 13C Content of Soil Atmosphere, Water Resources Research, 14.691-692.CrossRefGoogle Scholar
  67. Shackleton, N.J., and Opdyke, N.D., 1973, Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on a iOS year and 106 year scale, Quaternary Research, 3:39-55.CrossRefGoogle Scholar
  68. Stuiver, M., Grootes, P.M., and Braziunas, T.F., 1995, The GISP2 6180 climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes, Quaternary Research, 44: 341-354.CrossRefGoogle Scholar
  69. Turgeon, S., and Lundberg, J, in press, Chronology of discontinuities and petrology of speleothems as paleoclimatic indicators of the Klamath mountains, southwest Oregon, USA. Carbonates and Evaporites. Vesely, M.M., 2000, Annual speleothem laminae width: a high-resolution indicator of paleoclimate in Ireland: M.A. Thesis, Department of Geography and Environmental Studies, Carleton University, 99 p.Google Scholar
  70. Wells, R.E., and Heller, P.L, 1988, The relative contribution of accretion, shear, and extension to Cenozoic tectonic rotation in the Pacific Northwest, Geological Society of America Bulletin, 100: 325-338.CrossRefGoogle Scholar
  71. Winograd, I.J., Coplen T.B., Landwehr, J.M., Riggs, A.C., Ludwig, KR., Szabo, B.J., Kolesar, P.T., and Revesz, K.M., 1992, Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada, Science, 258: 255-260.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Steven C. Turgeon
    • 1
  • Joyce Lundberg
    • 2
  1. 1.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Department of Geography and Environmental StudiesCarleton UniversityOntarioCanada

Personalised recommendations