Combinatorial Cardinal Characteristics of the Continuum

Chapter

Abstract

The combinatorial study of subsets of the set N of natural numbers and of functions from N to N leads to numerous cardinal numbers, uncountable but no larger than the continuum. For example, how many infinite subsets X of N must I take so that every subset Y of N or its complement includes one of my X’s? Or how many functions f from N to N must I take so that every function from N to N is majorized by one of my f’s? The main results about these cardinal characteristics of the continuum are of two sorts: inequalities involving two (or sometimes three) characteristics, and independence results saying that other such inequalities cannot be proved in ZFC. Other results concern, for example, the cofinalities of these cardinals or connections with other areas of mathematics. This survey concentrates on the combinatorial set-theoretic aspects of the theory.

Keywords

Coherence Dition Topo Nite Univer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Bohuslav Balcar and Petr Simon. On minimal π-character of points in extremally disconnected compact spaces. Topology and Its Applications, 41:133–145, 1991. MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Bohuslav Balcar, Jan Pelant, and Petr Simon. The space of ultrafilters on N covered by nowhere dense sets. Fundamenta Mathematicae, 110:11–24, 1980. MathSciNetMATHGoogle Scholar
  3. [3]
    Tomek Bartoszyński. Additivity of measure implies additivity of category. Transactions of the American Mathematical Society, 281:209–213, 1984. MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Tomek Bartoszyński. Combinatorial aspects of measure and category. Fundamenta Mathematicae, 127:225–239, 1987. MathSciNetMATHGoogle Scholar
  5. [5]
    Tomek Bartoszyński and Haim Judah. Set Theory, On the Structure of the Real Line. A.K. Peters, Wellesley, 1995. MATHGoogle Scholar
  6. [6]
    Tomek Bartoszyński, Haim Judah, and Saharon Shelah. The Cichoń diagram. The Journal of Symbolic Logic, 58:401–423, 1993. MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Tomek Bartoszyński, Andrzej Rosłanowski, and Saharon Shelah. Adding one random real. The Journal of Symbolic Logic, 61:80–90, 1996. MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    James E. Baumgartner. Almost-disjoint sets, the dense-set problem, and the partition calculus. Annals of Mathematical Logic, 9:401–439, 1976. MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    James E. Baumgartner. Iterated forcing. In Adrian R. D. Mathias, editor, Surveys in Set Theory, volume 87 of London Mathematical Society Lecture Note Series, pages 1–59. Cambridge University Press, London, 1983. Google Scholar
  10. [10]
    James E. Baumgartner and Peter L. Dordal. Adjoining dominating functions. The Journal of Symbolic Logic, 50:94–101, 1985. MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    James E. Baumgartner and Richard Laver. Iterated perfect-set forcing. Annals of Mathematical Logic, 17:271–288, 1979. MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Murray Bell. On the combinatorial principle P(c). Fundamenta Mathematicae, 114:149–157, 1981. MathSciNetMATHGoogle Scholar
  13. [13]
    Andreas Blass. Orderings of ultrafilters. PhD thesis, Harvard University, 1970. Google Scholar
  14. [14]
    Andreas Blass. The Rudin-Keisler ordering of P-points. Transactions of the American Mathematical Society, 179:145–166, 1973. MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    Andreas Blass. Near coherence of filters, I: Cofinal equivalence of models of arithmetic. Notre Dame Journal of Formal Logic, 27:579–591, 1986. MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    Andreas Blass. Ultrafilters related to Hindman’s finite unions theorem and its extensions. In Stephen G. Simpson, editor, Logic and Combinatorics, volume 65 of Contemporary Mathematics, pages 89–124. American Mathematical Society, Providence, 1987. Google Scholar
  17. [17]
    Andreas Blass. Selective ultrafilters and homogeneity. Annals of Pure and Applied Logic, 38:215–255, 1988. MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    Andreas Blass. Applications of superperfect forcing and its relatives. In Juris Steprāns and Stephen Watson, editors, Set Theory and Its Applications, volume 1401 of Lecture Notes in Mathematics, pages 18–40. Springer, Berlin, 1989. CrossRefGoogle Scholar
  19. [19]
    Andreas Blass. Groupwise density and related cardinals. Archive for Mathematical Logic, 30:1–11, 1990. MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    Andreas Blass. Simple cardinal characteristics of the continuum. In Haim Judah, editor, Set Theory of the Reals, volume 6 of Israel Mathematical Conferences Proceedings, pages 63–90. American Mathematical Society, Providence, 1993. Google Scholar
  21. [21]
    Andreas Blass. Cardinal characteristics and the product of countably many infinite cyclic groups. Journal of Algebra, 169:512–540, 1994. MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    Andreas Blass. Reductions between cardinal characteristics of the continuum. In Tomek Bartoszyński and Marion Scheepers, editors, Set Theory (Annual Boise Extravaganza in Set Theory Conference, 1992–94), volume 192 of Contemporary Mathematics, pages 31–49. American Mathematical Society, Providence, 1996. Google Scholar
  23. [23]
    Andreas Blass and Claude Laflamme. Consistency results about filters and the number of inequivalent growth types. The Journal of Symbolic Logic, 54:50–56, 1989. MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    Andreas Blass and Saharon Shelah. Dominating, unsplit, and Ramsey reals. To appear. Google Scholar
  25. [25]
    Andreas Blass and Saharon Shelah. There may be simple \(P_{\aleph_{1}}\) and \(P_{\aleph_{2}}\) points and the Rudin-Keisler ordering may be downward directed. Annals of Pure and Applied Logic, 33:213–243, 1987. MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    Andreas Blass and Saharon Shelah. Near coherence of filters III: A simplified consistency proof. Notre Dame Journal of Formal Logic, 30:530–538, 1989. MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    Andreas Blass and Saharon Shelah. Ultrafilters with small generating sets. Israel Journal of Mathematics, 65:259–271, 1989. MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    David Booth. Ultrafilters on a countable set. Annals of Mathematical Logic, 2:1–24, 1970. MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    Jörg Brendle. Combinatorial properties of classical forcing notions. Annals of Pure and Applied Logic, 73:143–170, 1995. MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    Jörg Brendle. Evasion and prediction—the Specker phenomenon and Gross spaces. Forum Mathematicum, 7:513–541, 1995. MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    Jörg Brendle. Strolling through paradise. Fundamenta Mathematicae, 148:1–25, 1995. MathSciNetMATHGoogle Scholar
  32. [32]
    Jörg Brendle. Evasion and prediction. III. Constant prediction and dominating reals. Journal of the Mathematical Society of Japan, 55:101–115, 2003. MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    Jörg Brendle and Saharon Shelah. Evasion and prediction. II. Journal of the London Mathematical Society (2), 53:19–27, 1996. MathSciNetMATHGoogle Scholar
  34. [34]
    Jörg Brendle and Saharon Shelah. Evasion and prediction. IV. Archive for Mathematical Logic, 42:349–360, 2003. MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    Jörg Brendle, Haim Judah, and Saharon Shelah. Combinatorial properties of Hechler forcing. Annals of Pure and Applied Logic, 58:185–199, 1992. MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    Maxim Burke. A proof of Hechler’s theorem on embedding 1-directed sets cofinally into (ω ω,<*). Archive for Mathematical Logic, 36:399–403, 1997. MathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    R. Michael Canjar. On the generic existence of special ultrafilters. Proceedings of the American Mathematical Society, 110:233–241, 1990. MathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    Georg Cantor. Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen. Journal für die reine und angewandte Mathematik (Crelle), 77:258–262, 1874. CrossRefGoogle Scholar
  39. [39]
    Jacek Cichoń and Janusz Pawlikowski. On ideals of subsets of the plane and on Cohen reals. The Journal of Symbolic Logic, 51:560–569, 1986. MathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    Paul J. Cohen. The independence of the continuum hypothesis. Proceedings of the National Academy of Sciences USA, 50:1143–1148, 1963. CrossRefGoogle Scholar
  41. [41]
    Peter L. Dordal. A model in which the base-matrix tree cannot have cofinal branches. The Journal of Symbolic Logic, 52:651–664, 1987. MathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    Eric van Douwen. The integers and topology. In Kenneth Kunen and Jerry E. Vaughan, editors, Handbook of Set Theoretic Topology, pages 111–167. North-Holland, Amsterdam, 1984. Google Scholar
  43. [43]
    Alan Dow. Tree π-bases for βℕ−ℕ in various models. Topology and Its Applications, 33:3–19, 1989. MathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    Alan Dow. More set-theory for topologists. Topology and Its Applications, 64:243–300, 1995. MathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    Erick Todd Eisworth. Contributions to the theory of proper forcing. PhD thesis, University of Michigan, 1994. Google Scholar
  46. [46]
    Grigorii Fichtenholz and Leonid Kantorovitch. Sur les opérations linéaires dans l’espace des fonctions bornées. Studia Mathematica, 5:69–98, 1935. MATHGoogle Scholar
  47. [47]
    David Fremlin. Cichoń’s diagram. In Gustave Choquet, Marc Rogalski, and Jean Saint Raymond, editors, Séminaire Initiation à l’Analyse, pages 5-01–5-13. Publications Mathématiques de l’Université Pierre et Marie Curie, Paris, 1984. Google Scholar
  48. [48]
    David Fremlin. Consequences of Martin’s Axiom, volume 84 of Cambridge Tracts in Mathematics. Cambridge University Press, London, 1984. MATHGoogle Scholar
  49. [49]
    Fred Galvin and Karel Prikry. Borel sets and Ramsey’s theorem. The Journal of Symbolic Logic, 38:193–198, 1973. MathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    Leonard Gillman and Meyer Jerison. Rings of Continuous Functions. Van Nostrand, Princeton, 1960. MATHGoogle Scholar
  51. [51]
    Martin Goldstern. Tools for your forcing construction. In Haim Judah, editor, Set Theory of the Reals, volume 6 of Israel Mathematical Conferences Proceedings, pages 305–360. American Mathematical Society, Providence, 1993. Google Scholar
  52. [52]
    Martin Goldstern and Saharon Shelah. Ramsey ultrafilters and the reaping number—Con \(({\mbox {$\mathfrak {r}$}}<{\mbox {$\mathfrak {u}$}})\) . Annals of Pure and Applied Logic, 49:121–142, 1990. MathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    Martin Goldstern and Saharon Shelah. Many simple cardinal invariants. Archive for Mathematical Logic, 32:203–221, 1993. MathSciNetCrossRefMATHGoogle Scholar
  54. [54]
    Felix Hausdorff. Über zwei Sätze von G. Fichtenholz und L. Kantorovitch. Studia Mathematica, 6:18–19, 1936. MATHGoogle Scholar
  55. [55]
    Stephen H. Hechler. Short complete nested sequences in β NN and small maximal almost-disjoint families. General Topology and Its Applications, 2:139–149, 1972. MathSciNetCrossRefGoogle Scholar
  56. [56]
    Stephen H. Hechler. A dozen small uncountable cardinals. In R. Alo, R. Heath, and J.-I. Nagata, editors, TOPO 72. General Topology and Its Applications, volume 378 of Lecture Notes in Mathematics, pages 207–218. Springer, Berlin, 1974. CrossRefGoogle Scholar
  57. [57]
    Stephen H. Hechler. On the existence of certain cofinal subsets of ω ω. In Thomas J. Jech, editor, Axiomatic Set Theory, Part II, volume 13(2) of Proceedings of Symposia in Pure Mathematics, pages 155–173. American Mathematical Society, Providence, 1974. Google Scholar
  58. [58]
    Stephen H. Hechler. On a ubiquitous cardinal. Proceedings of the American Mathematical Society, 52:348–352, 1975. MathSciNetCrossRefMATHGoogle Scholar
  59. [59]
    Neil Hindman. Finite sums from sequences within cells of a partition of N. Journal of Combinatorial Theory (A), 17:1–11, 1974. MathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    Jaime Ihoda (Haim Judah) and Saharon Shelah. Souslin forcing. The Journal of Symbolic Logic, 53:1188–1207, 1988. MathSciNetCrossRefGoogle Scholar
  61. [61]
    Jaime Ihoda (Haim Judah) and Saharon Shelah. \({\Delta}^{1}_{2}\) sets of reals. Annals of Pure and Applied Logic, 42:207–223, 1989. MathSciNetCrossRefGoogle Scholar
  62. [62]
    Thomas J. Jech. Multiple Forcing, volume 88 of Cambridge Tracts in Mathematics. Cambridge University Press, London, 1986. MATHGoogle Scholar
  63. [63]
    Masaru Kada. The Baire category theorem and the evasion number. Proceedings of the American Mathematical Society, 126:3381–3383, 1988. MathSciNetCrossRefGoogle Scholar
  64. [64]
    Anastasis Kamburelis and Bogdan Węglorz. Splittings. Archive for Mathematical Logic, 35:263–277, 1996. MathSciNetCrossRefMATHGoogle Scholar
  65. [65]
    Shizuo Kamo. Cardinal invariants associated with predictors. In Pavel Pudlák, Samuel Buss, and Petr Hájek, editors, Logic Colloquium ’98, pages 280–295. Lecture Notes in Logic. A.K. Peters, Natick, 2000. Google Scholar
  66. [66]
    Jussi Ketonen. On the existence of P-points in the Stone-Čech compactification of integers. Fundamenta Mathematicae, 92:91–94, 1976. MathSciNetMATHGoogle Scholar
  67. [67]
    Kenneth Kunen. Some points in β N. Mathematical Proceedings of the Cambridge Philosophical Society, 80:385–398, 1976. MathSciNetCrossRefMATHGoogle Scholar
  68. [68]
    Kenneth Kunen. Set Theory: An Introduction to Independence Proofs. North-Holland, Amsterdam, 1980. MATHGoogle Scholar
  69. [69]
    Kenneth Kunen and Franklin Tall. Between Martin’s axiom and Souslin’s hypothesis. Fundamenta Mathematicae, 102:173–181, 1979. MathSciNetMATHGoogle Scholar
  70. [70]
    Claude Laflamme. Equivalence of families of functions on natural numbers. Transactions of the American Mathematical Society, 330:307–319, 1992. MathSciNetCrossRefMATHGoogle Scholar
  71. [71]
    Claude Laflamme. Combinatorial aspects of F σ filters with an application to \({\ensuremath {\mathcal {N}}}\) -sets. Proceedings of the American Mathematical Society, 125:3019–3025, 1997. MathSciNetCrossRefMATHGoogle Scholar
  72. [72]
    Richard Laver. On the consistency of Borel’s conjecture. Acta Mathematica, 137:151–169, 1976. MathSciNetCrossRefGoogle Scholar
  73. [73]
    Viatcheslav I. Malyhin. Topological properties of Cohen generic extension. Transactions of the Moscow Mathematical Society, 52:1–32, 1979. Google Scholar
  74. [74]
    Donald A. Martin and Robert M. Solovay. Internal Cohen extensions. Annals of Mathematical Logic, 2:143–178, 1970. MathSciNetCrossRefMATHGoogle Scholar
  75. [75]
    Adrian R. D. Mathias. Solution of problems of Choquet and Puritz. In W. Hodges, editor, Conference in Mathematical Logic—London ’70, volume 255 of Lecture Notes in Mathematics, pages 204–210. Springer, Berlin, 1972. CrossRefGoogle Scholar
  76. [76]
    Adrian R. D. Mathias. Happy families. Annals of Mathematical Logic, 12:59–111, 1977. MathSciNetCrossRefMATHGoogle Scholar
  77. [77]
    Heike Mildenberger. Non-constructive Galois-Tukey connections. The Journal of Symbolic Logic, 62:1179–1186, 1997. MathSciNetCrossRefMATHGoogle Scholar
  78. [78]
    Heike Mildenberger. Changing cardinal invariants of the reals without changing cardinals or the reals. The Journal of Symbolic Logic, 63:593–599, 1998. MathSciNetCrossRefMATHGoogle Scholar
  79. [79]
    Arnold Miller. There are no Q-points in Laver’s model for the Borel conjecture. Proceedings of the American Mathematical Society, 78:103–106, 1980. MathSciNetCrossRefMATHGoogle Scholar
  80. [80]
    Arnold Miller. Some properties of measure and category. Transactions of the American Mathematical Society, 266:93–114, 1981. MathSciNetCrossRefMATHGoogle Scholar
  81. [81]
    Arnold Miller. Additivity of measure implies dominating reals. Proceedings of the American Mathematical Society, 91:111–117, 1984. MathSciNetCrossRefMATHGoogle Scholar
  82. [82]
    Arnold Miller. Rational perfect set forcing. In James E. Baumgartner, Donald A. Martin, and Shelah Shelah, editors, Axiomatic Set Theory, volume 31 of Contemporary Mathematics, pages 143–159. American Mathematical Society, Providence, 1984. Google Scholar
  83. [83]
    John Oxtoby. Measure and Category. Springer, Berlin, 1980. Second edition. MATHGoogle Scholar
  84. [84]
    Janusz Pawlikowski. Why Solovay real produces Cohen real. The Journal of Symbolic Logic, 51:957–968, 1986. MathSciNetCrossRefMATHGoogle Scholar
  85. [85]
    Janusz Pawlikowski and Ireneusz Recław. Parametrized Cichoń’s diagram and small sets. Fundamenta Mathematicae, 147:135–155, 1995. MathSciNetMATHGoogle Scholar
  86. [86]
    Zbigniew Piotrowski and Andrzej Szymański. Some remarks on category in topological spaces. Proceedings of the American Mathematical Society, 101:156–160, 1987. MathSciNetCrossRefMATHGoogle Scholar
  87. [87]
    Szymon Plewik. Intersections and unions of ultrafilters without the Baire property. Bulletin of the Polish Academy of Sciences, Mathematics, 35:805–808, 1987. MathSciNetMATHGoogle Scholar
  88. [88]
    Bedřich Pospíšil. On bicompact spaces. Publications de la Faculté des Sciences de l’Université Masaryk, 270:3–16, 1939. Google Scholar
  89. [89]
    Jean Raisonnier and Jacques Stern. The strength of measurability hypotheses. Israel Journal of Mathematics, 50:337–349, 1985. MathSciNetCrossRefMATHGoogle Scholar
  90. [90]
    Fritz Rothberger. Eine Äquivalenz zwischen der Kontinuumhypothese und der Existenz der Lusinschen und Sierpińskischen Mengen. Fundamenta Mathematicae, 30:215–217, 1938. Google Scholar
  91. [91]
    Fritz Rothberger. Sur un ensemble toujours de première catégorie qui est dépourvu de la propriété λ. Fundamenta Mathematicae, 32:294–300, 1939. MATHGoogle Scholar
  92. [92]
    Fritz Rothberger. On some problems of Hausdorff and Sierpiński. Fundamenta Mathematicae, 35:29–46, 1948. MathSciNetMATHGoogle Scholar
  93. [93]
    Fritz Rothberger. On the property C and a problem of Hausdorff. Canadian Journal of Mathematics, 4:111–116, 1952. MathSciNetMATHGoogle Scholar
  94. [94]
    Mary Ellen Rudin. Partial orders on the types in β N. Transactions of the American Mathematical Society, 155:353–362, 1971. MathSciNetCrossRefMATHGoogle Scholar
  95. [95]
    Walter Rudin. Homogeneity problems in the theory of Čech compactifications. Duke Mathematical Journal, 23:409–419, 1956. MathSciNetCrossRefMATHGoogle Scholar
  96. [96]
    Gerald E. Sacks. Forcing with perfect closed sets. In Dana S. Scott, editor, Axiomatic Set Theory, volume 13, Part 1 of Proceedings of Symposia in Pure Mathematics, pages 331–355. American Mathematical Society, Providence, 1971. Google Scholar
  97. [97]
    Saharon Shelah. Proper Forcing, volume 940 of Lecture Notes in Mathematics. Springer, Berlin, 1982. MATHGoogle Scholar
  98. [98]
    Saharon Shelah. Can you take Solovay’s inaccessible away? Israel Journal of Mathematics, 48:1–47, 1984. MathSciNetCrossRefMATHGoogle Scholar
  99. [99]
    Saharon Shelah. On cardinal invariants of the continuum. In James E. Baumgartner, Donald A. Martin, Saharon Shelah, editors, Axiomatic Set Theory, volume 31 of Contemporary Mathematics, pages 183–207. American Mathematical Society, Providence, 1984. Google Scholar
  100. [100]
    Saharon Shelah. Two cardinal invariants of the continuum ( \(\mbox {$\mathfrak {d}$}<\mbox {$\mathfrak {a}$}\) ) and FS linearly ordered iterated forcing. Acta Mathematica, 192:187–223, 2004. Preprint title was “Are \({\mbox {$\mathfrak {a}$}}\) and \({\mbox {$\mathfrak {d}$}}\) your cup of tea?”. MathSciNetCrossRefMATHGoogle Scholar
  101. [101]
    Saharon Shelah and Otmar Spinas. The distributivity numbers of ℘(ω)/fin and its square. Transactions of the American Mathematical Society, 352:2023–2047, 2000. MathSciNetCrossRefMATHGoogle Scholar
  102. [102]
    Jack Silver. Every analytic set is Ramsey. The Journal of Symbolic Logic, 35:60–64, 1970. MathSciNetCrossRefMATHGoogle Scholar
  103. [103]
    R. C. Solomon. Families of sets and functions. Czechoslovak Mathematical Journal, 27:556–559, 1977. MathSciNetGoogle Scholar
  104. [104]
    Robert M. Solovay. A model of set theory in which every set of reals is Lebesgue measurable. Annals of Mathematics, 92:1–56, 1970. MathSciNetCrossRefGoogle Scholar
  105. [105]
    Robert M. Solovay. Real-valued measurable cardinals. In Dana S. Scott, editor, Axiomatic Set Theory, volume 13, Part 1 of Proceeding of Symposia in Pure Mathematics, pages 331–355. American Mathematical Society, Providence, 1971. Google Scholar
  106. [106]
    Robert M. Solovay and Stanley Tennenbaum. Iterated Cohen extensions and Souslin’s problem. Annals of Mathematics, 94:201–245, 1971. MathSciNetCrossRefGoogle Scholar
  107. [107]
    Otmar Spinas. Analytic countably splitting families. The Journal of Symbolic Logic, 69:101–117, 2004. MathSciNetCrossRefMATHGoogle Scholar
  108. [108]
    Michel Talagrand. Compacts de fonctions mesurables et filtres non mesurables. Studia Mathematica, 67:13–43, 1980. MathSciNetMATHGoogle Scholar
  109. [109]
    Daniel Talayco. Applications of homological algebra to questions in set theory: Gaps and trees. PhD thesis, University of Michigan, 1993. Google Scholar
  110. [110]
    John Truss. Sets having calibre 1. In Robin O. Gandy and J. Martin E. Hyland, editors, Logic Colloquium ’76, volume 87 of Studies in Logic and the Foundations of Mathematics, pages 595–612. North-Holland, Amsterdam, 1977. Google Scholar
  111. [111]
    Jerry E. Vaughan. Small uncountable cardinals and topology. In Jan van Mill and G. Michael Reed, editors, Open Problems in Topology, pages 195–218. North-Holland, Amsterdam, 1990. Google Scholar
  112. [112]
    Peter Vojtáš. Generalized Galois-Tukey connections between explicit relations on classical objects of real analysis. In Haim Judah, editor, Set Theory of the Reals, volume 6 of Israel Mathematical Conferences Proceedings, pages 619–643. American Mathematical Society, Providence, 1993. Google Scholar
  113. [113]
    Ed Wimmers. The Shelah P-point independence theorem. Israel Journal of Mathematics, 43:28–48, 1982. MathSciNetCrossRefMATHGoogle Scholar
  114. [114]
    O. Yiparaki. On some tree partitions. PhD thesis, University of Michigan, 1994. Google Scholar
  115. [115]
    Jindřich Zapletal. Isolating cardinal invariants. Journal of Mathematical Logic, 3:143–162, 2003. MathSciNetCrossRefMATHGoogle Scholar
  116. [116]
    Jindřich Zapletal. Descriptive set theory and definable forcing, volume 167, number 793 of Memoirs of the American Mathematical Society. American Mathematical Society, Providence, 2004. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations