Fine-Scale Ultra-Low Velocity Zone Layering at the Core-Mantle Boundary and Superplumes

  • Edward J. Garnero
  • Michael S. Thorne
  • Allen McNamara
  • Sebastian Rost


Mantle Plume Lower Mantle Mantle Convection Deep Mantle Plume Conduit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akins, J.A., S.-N. Luo, P.D. Asimow, and T.J. Ahrens (2004) Shock-induced melting of MgSiO3 perovskite and implications for melts in Earth’s lowermost mantle. Geophys. Res. Lett., 31(14), doi:10.1029/2004GL020237.Google Scholar
  2. Bataille, K., and F. Lund (1996) Strong scattering of short-period seismic waves by the core-mantle boundary and the P-diffracted wave. Geophys. Res. Lett., 23, 2413–2416.CrossRefGoogle Scholar
  3. Bataille, K., S. Flatté, and R.S. Wu (1990) Inhomogeneities near the core mantle boundary evidenced from scattered waves: A Review. Pure Applied Geophys., 132, 151–173.CrossRefGoogle Scholar
  4. Berryman, J.G. (2000) Seismic velocity decrement ratios for regions of partial melt in the lower mantle. Geophys. Res. Lett., 27, 421–424.CrossRefGoogle Scholar
  5. Bullen, K.E. (1949) Compressibility-pressure hypothesis and the Earth’s interior. Mon. Not. Roy. Astron. Soc., Geophys. Suppl., 5, 355–368.Google Scholar
  6. Bunge, H.P., M.A. Richards, C. Lithgow-Bertelloni, J.R. Baumgardner, S.P. Grand, and B.A. Romanowicz (1998) Timescales and heterogeneous structure in geodynamic Earth models. Science, 280, 91–95.CrossRefGoogle Scholar
  7. Bunge, H.P., M.A. Richards, and J.R. Baumgardner (2002) Mantle-circulation models with sequential data assimilation: Inferring present-day mantle structure from plate-motion histories. Phil. Trans. R. Soc. Lond. A, 360, 2545–2567.CrossRefGoogle Scholar
  8. Cormier, V.F. (1999) Anisotropy of heterogeneity scale lengths in the lower mantle from PKIKP precursors. Geophy. J. Int., 136, 373–384.CrossRefGoogle Scholar
  9. Cormier, V.F. (2000) Dʺ as a transition in the heterogeneity spectrum of the lowermost mantle. J. Geophys. Res., 105, 16193–16205.CrossRefGoogle Scholar
  10. Davaille, A. (1999) Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature, 402, 756–760.CrossRefGoogle Scholar
  11. Davaille, A., F. Girard, and M. Le Bars (2002) How to anchor hotspots in a convecting mantle? Earth Planet. Sci. Lett., 203, 621–634.CrossRefGoogle Scholar
  12. Deschamps F., and J. Trampert (2003) Mantle tomography and its relation to temperature and composition. Phys. Earth Planet. Int., 140, 277–291.CrossRefGoogle Scholar
  13. Dobson, D.P., and J.P. Brodholt (2005) Subducted iron formations as a source of ultralow-velocity zones at the core-mantle boundary. Nature, 434, 371–374.CrossRefGoogle Scholar
  14. Duncan, R.A., and M.A. Richards (1991) Hotspots, mantle plumes, flood basalts, and true polar wander. Rev. Geophys., 29 (1), 31–50.Google Scholar
  15. Dziewonski, A.M. (1984) Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res., 89, 5929–5952.CrossRefGoogle Scholar
  16. Dziewonski, A.M., and D.L. Anderson (1981) Preliminary reference Earth model. Phys. Earth and Planet. Inter., 25(4), 297–356.CrossRefGoogle Scholar
  17. Farnetani, C.G., and H. Samuel (2005) Beyond the thermal plume paradigm. Geophys. Res. Lett., 32, No. 7, L07311, 10.1029/2005GL022360.CrossRefGoogle Scholar
  18. Flatté, S.M., and R.S. Wu (1988) Small-scale structure in the lithosphere and asthenosphere deduced from arrival-time and amplitude fluctuations at NORSAR. J. Geophys. Res., 93, 6601–6614.Google Scholar
  19. Ford, S.R., E.J. Garnero, and A.K. McNamara (2006) A strong lateral shear velocity gradient and anisotropy heterogeneity in the lowermost mantle beneath the southern Pacific. J. Geophys. Res., 111, B03306, doi:10.1029/2004JB003574.CrossRefGoogle Scholar
  20. Garnero, E.J. (2000) Heterogeneity of the lowermost mantle. Ann. Rev. Earth Planetary Sci., 28, 509–537.CrossRefGoogle Scholar
  21. Garnero, E.J. (2004) A new paradigm for Earth’s core-mantle boundary. Science, 304, doi:10.1126/science.1097849.Google Scholar
  22. Garnero, E.J., and D.V. Helmberger (1998) Further structural constraints and uncertainties of a thin laterally varying ultra-low velocity layer at the base of the mantle. J. Geophys. Res., 103, 12495–12509.CrossRefGoogle Scholar
  23. Garnero, E.J., V. Maupin, T. Lay, and M.J. Fouch (2004) Variable azimuthal anisotropy in Earth’s lowermost mantle. Science, 306(5694).Google Scholar
  24. Grand, S.P. (2002) Mantle shear-wave tomography and the fate of subducted slabs. Phil. Trans. R. Soc. Lond. A, 360, 2475–2491.CrossRefGoogle Scholar
  25. Gu, Y.J., A.M. Dziewonski, W.J. Su, and G. Ekstrom (2001) Models of the mantle shear velocity and discontinuities in the pattern of lateral heterogeneities. J. Geophys. Research-Solid Earth, 106(B6), 11169–11199.CrossRefGoogle Scholar
  26. Hager, B.H., R.W. Clayton, M.A. Richards, R.P. Comer, A.M. Dziewonski (1985) Lower mantle heterogeneity, dynamic topography and the geoid. Nature, 313(6003), 541–546.CrossRefGoogle Scholar
  27. Hedlin, M.A.H., and P.M. Shearer (2000) An analysis of large scale variations in small-scale mantle heterogeneity using Global Seismic Network recordings of precursors to PKP. J. Geophys. Res., 105, 13655–13673.CrossRefGoogle Scholar
  28. Helmberger, D.V., and S. Ni (2005) Approximate 3D body wave synthetics for tomographic models. Bull. Seismol. Soc. Am., 95, 212–224.CrossRefGoogle Scholar
  29. Hernlund, J.W., C. Thomas, and P.J. Tackley (2005) A doubling of the post-perovskite phase boundary and the structure of the lowermost mantle. Nature, 434, 882–886.CrossRefGoogle Scholar
  30. Ishii, M., and J. Tromp (1999) Normal-mode and free-air gravity constraints on lateral variations in velocity and density of Earth’s mantle. Science, 285, 1231–1236.CrossRefGoogle Scholar
  31. Ishii, M., and J. Tromp (2004) Constraining large-scale mantle heterogeneity using mantle and inner-core sensitive normal modes. Phys. Earth Plan. Int., 146, 113–124.CrossRefGoogle Scholar
  32. Jellinek, A.M., and M. Manga (2002) The influence of a chemical boundary layer on the fixity and lifetime of mantle plumes. Nature, 418, 760–763.CrossRefGoogle Scholar
  33. Jellinek, A.M., and M. Manga (2004) Links between long-lived hotspots, mantle plumes, Dʺ and plate tectonics. Rev. Geophys., 42(3), RG3002, 10.1029/2003RG000144.CrossRefGoogle Scholar
  34. Ji, Y., and H.C. Nataf (1998) Detection of mantle plumes in the lower mantle by diffraction tomography: Theory. Earth and Planetary Science Letters, 159(3–4), 87–98.CrossRefGoogle Scholar
  35. Kendall, J.-M., and P. G. Silver (1998) Investigating causes of Dʺ anisotropy. In Gurnis, M., M. Wyession, E. Knittle, and B. Buffet (eds.) The Core-Mantle Boundary Region, AGU, Washington, D.C., USA, pp. 97–118.Google Scholar
  36. Kendall, J.-M., Seismic anisotropy in the boundary layers of the mantle. In Karato, S., A.M. Forte, R.C. Liebermannm, G. Masters, and L. Stixrude (eds.) Earth’s Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale, AGU, Washington, D.C., USA, pp. 133–159.Google Scholar
  37. Koper, K.D., and M.L. Pyle (2004) Observations of PKiKP/PcP amplitude ratios and implications for Earth structure at the boundaries of the liquid core. J. Geophys. Res., 109, B03301, doi:10.1029/2003JB002750.CrossRefGoogle Scholar
  38. Knittle, E., and R. Jeanloz (1989) Simulating the core-mantle boundary: An experimental study of high-pressure reactions between silicates and liquid iron. Geophys. Res. Lett., 16, 609–612.Google Scholar
  39. Knittle, E., and R. Jeanloz (1991) Earth’s core-mantle boundary-Results of experiments at high pressures and temperatures. Science, 251, 1438–1443.CrossRefGoogle Scholar
  40. Kuo, C., and B. Romanowicz (2002) On the resolution of density anomalies in the Earth’s mantle using spectral fitting of normal mode data. Geophys. J. Inter., 150, 162–179.CrossRefGoogle Scholar
  41. Lay, T., E.J. Garnero, Q. Williams, L. Kellogg, and M.E. Wysession (1998) Seismic wave anisotropy in the Dʺ region and its implications, In Gurnis, M., M. Wysession, E. Knittle, and B. Buffett (eds.) The Core-Mantle Boundary Region, AGU, Washington, D.C., U.S.A., pp. 299–318.Google Scholar
  42. Lay, T., and E.J. Garnero (2004) Core-mantle boundary structures and processes. In Sparks, R.S.J., and C.J. Hawkesworth (eds.) The State of the Planet: Frontiers and Challenges in Geophysics, Geophysical Monograph 150, IUGG Volume 19, doi:10.1029/150GM04.Google Scholar
  43. Lay, T., E.J. Garnero, and Q. Williams (2004) Partial melting in a thermo-chemical boundary layer at the base of the mantle. Phys. Earth Planet. Int., 146, 441–467.CrossRefGoogle Scholar
  44. Lay, T., D. Heinz, M. Ishii, S.-H. Shim, J. Tsuchiya, T. Tsuchiya, R. Wentzcovitch, and D.A. Yuen (2005) Multidisciplinary impact of the deep mantle phase transition in perovskite structure. Eos Trans., 86, No. 1, 1–15.Google Scholar
  45. Lithgow-Bertelloni, C., and M.A. Richards (1998) Dynamics of cenozoic and mesozoic plate motions. Rev. Geophys., 36, 27–78.CrossRefGoogle Scholar
  46. Manga, M., and R. Jeanloz (1996) Implications of a metal-bearing chemical boundary layer in Dʺ for mantle dynamics. Geophys. Res. Lett., 23, 3091–3094.CrossRefGoogle Scholar
  47. Maruyama, S. (1994) Plume tectonics. J. Geol. Soc. Jpn., 100, 24–49.Google Scholar
  48. Maruyama, S., M. Kumazawa, and S. Kawakami (1994) To wards a new paradigm on the Earth’s dynamics. J. Geol. Soc. Jpn., 100, 1–3.Google Scholar
  49. Masters, G., and D. Gubbins (2003) On the resolution of density within the Earth. Phys. Earth Planet. Int., 140, 159–167.CrossRefGoogle Scholar
  50. Masters, G., G. Laske, H. Bolton, and A. Dziewonski (2000) The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: Implications for chemical and thermal structure. In Karato, S. (ed.) Earth’s Deep Interior, AGU Monograph, 117, pp. 63–87.Google Scholar
  51. McNamara, A.K., and S. Zhong (2004a) Thermochemical structures within a spherical mantle: Super-plumes or piles? J. Geophys. Res., 109, B07402, doi:10.1029/2003JB002847.CrossRefGoogle Scholar
  52. McNamara, A.K, and S. Zhong (2004b) The influence of thermochemical convection on the fixity of mantle plumes. Earth and Planet. Sci. Lett., 222, 485–500.CrossRefGoogle Scholar
  53. McNamara, A.K., and S. Zhong (2005) Thermochemical Piles under Africa and the Pacific. Nature, 437, 1136–1139.CrossRefGoogle Scholar
  54. Mégnin, C., and B. Romanowicz (2000) The three-dimensional shear velocity structure of the mantle from the inversion of body, surface, and higher-mode waveforms. Geophys. J. Int., 143, 709–728.CrossRefGoogle Scholar
  55. Montelli, R., G. Nolet, F. Dahlen, G. Masters, E. Engdahl, and S. Hung (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303, 338–343.CrossRefGoogle Scholar
  56. Morgan, W.J. (1971) Convection plumes in the lower mantle. Nature, 230, 42–43.CrossRefGoogle Scholar
  57. Morgan, W.J. (1972) Deep mantle convection plumes and plate motions. Am. Assoc. Petrol. Geol. Bull., 56(2), 203–213.Google Scholar
  58. Mori, J., and D.V. Helmberger (1995) Localized boundary layer below the mid-Pacific velocity anomaly from a PcP precursor. J. Geophys. Res., 100, 20359–20365.CrossRefGoogle Scholar
  59. Muller R.A. (2002) Avalanches at the core-mantle boundary. Geophys. Res. Lett., 29(19), 1935, doi:10.1029/2002GL015938.CrossRefGoogle Scholar
  60. Murakami, M., K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi (2004) Post-perovskite phase transition in MgSiO3. Science, 304, 855–858.CrossRefGoogle Scholar
  61. Ni, S., E. Tan, M. Gurnis, and D.V. Helmberger (2002) Sharp sides to the African Superplume. Science, 296, 1850–1852.CrossRefGoogle Scholar
  62. Ni, S., and D.V. Helmberger (2003a) Ridge-like lower mantle structure beneath South Africa. J. Geophys. Res., 108, No. B2, 2094.CrossRefGoogle Scholar
  63. Ni, S., and D.V. Helmberger (2003b) Seismological constraints on the South African superplume; could be the oldest distinct structure on Earth. Earth Planet. Sci. Lett., 206, 119–131.CrossRefGoogle Scholar
  64. Niu, F., and L. Wen (2001) Strong seismic scatterers near the core-mantle boundary west of Mexico. Geophys. Res. Lett., 28, 3557–3560.CrossRefGoogle Scholar
  65. Oganov, A.R., and S. Ono (2004) Theoretical and experimental evidence for a post-pero vskite phase of MgSiO3 in Earth’s Dʺ layer. Nature, 430, 445–448.CrossRefGoogle Scholar
  66. Olson, P., and C. Kincaid (1991) Experiments on the interaction of thermal convection and compositional layering at the base of the mantle. J. Geophys. Res., 96(B3), 4347–4354.Google Scholar
  67. Poirier, J.-P. (1993) Core-infiltrated mantle and the nature of the Dʺ layer. J. Geomag. Geoelectr., 45, 1221–1227.Google Scholar
  68. Ritsema, J., and H.J. van Heijst (2000) Seismic imaging of structural heterogeneity in Earth’s mantle: Evidence for large-scale mantle flow. Science Progress, 83, 243–259.Google Scholar
  69. Rokosky, J.M., T. Lay, E.J. Garnero, and S.A. Russell (2004) High resolution investigation of shear-wave anisotropy in Dʺ beneath the Cocos Plate. Geophys. Res. Lett., 31, L07605, doi: 10.1029/2003GL018902.CrossRefGoogle Scholar
  70. Romanowicz, B. (1991) Seismic tomography of the Earth’s mantle. Ann. Rev. Earth Planet. Sci., 19, 77–99.CrossRefGoogle Scholar
  71. Rondenay, S., and K.M. Fischer (2003) Constraints on localized core-mantle boundary structure from multichannel, broadband SKS coda analysis. J. Geophys. Res., 108(B11), 2537, doi:10.1029/2003JB002518.CrossRefGoogle Scholar
  72. Rost, S., and J. Revenaugh (2001) Seismic detection of rigid zones at the top of the core. Science, 294, 1911–1914.CrossRefGoogle Scholar
  73. Rost, S., and J. Revenaugh (2003) Small-scale ultra-low velocity zone structure resolved by ScP. J. Geophys. Res. Solid Earth, 108, 10.1028/2001JB001627.Google Scholar
  74. Rost, S., and E.J. Garnero (2006) Detection of an ultra-low velocity zone at the CMB using diffracted PKKPab waves. J. Geophys. Res., 111, B07309, doi:10.1029/2005JB003850.CrossRefGoogle Scholar
  75. Rost, S., E.J. Garnero, Q. Williams, and M. Manga (2005) Seismic constraints on a possible plume root at the core-mantle boundary. Nature, 435, 666–669 (doi:10.1038/nature03620).CrossRefGoogle Scholar
  76. Saltzer, R.L., E. Stutzmann, and R.D. Van der Hilst (2004) Poisson’s ration beneath Alaska from the surface to the core-mantle boundary. J. Geophys. Res., 109, doi:10.1029/2003JB002712.Google Scholar
  77. Samuel, H., C.G. Farnetani, and D. Andrault (2005) Heterogeneous lowermost mantle: Compositional constraints and seismological observables. In Bass, J., R.D. van der Hilst, J. Matas, and J. Trampert (eds.) Structure Evolution and Composition of the Earth’s Mantle, AGU Geophysical Monograph.Google Scholar
  78. Shearer, P.M., M.A.H. Hedlin, and P.S. Earle (1998) PKP and PKKP precursor observations: Implications for the small-scale structure of the deep mantle and core. In Gurnis, M., M.E. Wysession, E. Knittle, B.A. Buffett (eds.) The Core-Mantle Boundary Region, Washington D.C, American Geophysical Union, pp. 37–55.Google Scholar
  79. Shim, S.-H., T.S. Duffy, R. Jeanloz, and G. Shen (2004) Stability and crystal structure of MgSiO3 perovskite to the core-mantle boundary. Geophys. Res. Lett., 31, L10603, doi:10.1029/2004GL019639.CrossRefGoogle Scholar
  80. Song, X., and T.J. Ahrens (1994) Pressure-temperature range of reactions between liquid iron in the outer core and mantle silicates. Geophys. Res. Lett., 21, 153–156.CrossRefGoogle Scholar
  81. Steinberger, B. (2000) Plumes in a convecting mantle: Models and observations for individual hotspots. J. Geophys. Res., 105, 11127–11152.CrossRefGoogle Scholar
  82. Su, W.J., and A.M. Dziewonski (1997) Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle. Phys. Earth Planet. Int., 100, 135–156.CrossRefGoogle Scholar
  83. Tackley, P.J. (1998) Three-dimensional simulations of mantle convection with a thermo-chemical basal boundary layer: Dʺ? In Gurnis, M., M.E. Wysession, E. Knittle, and B.A. Buffett (eds.) The Core-Mantle Boundary Region, American Geophysical Union, Washington, D.C., USA, pp. 231–253.Google Scholar
  84. Tackley, P. (2000) Mantle convection and plate tectonics: Toward an integrated physical and chemical theory. Science, 288, 2002–2007.CrossRefGoogle Scholar
  85. Tackley, P.J. (2002) Strong heterogeneity caused by deep mantle layering. Geochem. Geophys. Geosys., 3(4), 1024, doi:10.1029/2001GC000167.CrossRefGoogle Scholar
  86. Thomas, C., E.J. Garnero, and T. Lay (2004) High-resolution imaging of lowermost mantle structure under the Cocos Plate. J. Geophys. Res., 109, doi:10.1029/2004JB003013.Google Scholar
  87. Thorne, M.S., and E.J. Garnero (2004) Inferences on ultralow-velocity zone structure from a global analysis of SPdKS waves. J. Geophys. Res., 109, B08301, doi:10.1029/2004JB003010.CrossRefGoogle Scholar
  88. Thorne, M., E.J. Garnero, and S. Grand (2004) Geographic correlation between hot spots and deep mantle lateral shear-wave velocity gradients. Phys. Earth Planet. Int., 146, 47–63.CrossRefGoogle Scholar
  89. To, A., T.B. Romanowicz, Y. Capdeville, and N. Takeuchi (2005) 3D effects of sharp boundaries at the borders of the African and Pacific Superplumes: Observation and modeling. Earth Planet. Sci. Lett., 233, 137–153.CrossRefGoogle Scholar
  90. Trampert, J., F. Deschamps, J. Resovsky, and D.A. Yuen (2004) Probabilistic tomography maps chemical heterogenities throughout the mantle. Science, 306, 853–856.CrossRefGoogle Scholar
  91. Tsuchiya, T., J. Tsuchiya, K. Umemoto, and R.M. Wentzcovitch (2004) Elasticity of post-perovskite MgSiO3. Geophys. Res. Lett., 31, L14603, doi:10.1029/2004GL020278.CrossRefGoogle Scholar
  92. van der Hilst, R.D., and H. Kárason (1999) Compositional heterogeneity in the bottom 1000 kilometers of Earth’s mantle: Toward a hybrid convection model. Science, 283, 1885–1888.CrossRefGoogle Scholar
  93. Van Thienen, P., J. van Summeren, R.D. van der Hilst, A.P. van den Berg, and N.J. Vlaar (2005) Numerical study of the origin and stability of chemically distinct reservoirs deep in Earth’s mantle. In van der Hilst, R.D., J. Bass, J. Matas, and J. Trampert (eds.) The Structure, Evolution and Composition of Earth’s Mantle, AGU, Geophysical Monograph, pp. 117–136.Google Scholar
  94. Vidale, J.E., and M.A.H. Hedlin (1998) Evidence for partial melt at the core-mantle boundary north of Tonga from the strong scattering of seismic waves. Nature, 391, 682–685.CrossRefGoogle Scholar
  95. Wang, Y., and L. Wen (2004) Mapping the geometry and geographic distribution of a very-low velocity province at the base of the Earth’s mantle. J. Geophys. Res., 109, B10305, doi:10.1029/2003JB002674.CrossRefGoogle Scholar
  96. Wen, L. (2001) Seismic evidence for a rapidly-varying compositional anomaly at the base of the Earth’s mantle beneath the Indian ocean. Earth Planet. Sci. Lett., 194, 83–95.CrossRefGoogle Scholar
  97. Wen, L., and D.V. Helmberger (1998a) Ultra-low velocity zones near the core-mantle boundary from broadb and PKP precursors. Science, 279, 1701–1703.CrossRefGoogle Scholar
  98. Wen, L., and D.V. Helmberger (1998b) A2D P-SV hybrid method and its application to localized structures near the core-mantle boundary. J. Geophys. Res., 103, 17901–17918.CrossRefGoogle Scholar
  99. Williams, Q., and E.J. Garnero (1996) Seismic evidence for partial melt at the base of Earth’s mantle. Science, 273, 1528–1530.CrossRefGoogle Scholar
  100. Williams, Q., J.S. Revenaugh, and E.J. Garnero (1998) A correlation between ultra-low basal velocities in the mantle and hot spots. Science, 281, 546–549.CrossRefGoogle Scholar
  101. Wysession, M.E. (1996) Imaging cold rock at the base of the mantle: The sometimes fate of Slabs? In Bebout, G.E., D. Scholl, S. Kirby, and J.P. Platt (eds.) Subduction: Top to Bottom, American Geophysical Union, Washington, D.C., USA, pp. 369–384.Google Scholar
  102. Wysession, M., T. Lay, J. Revenaugh, Q. Williams, E.J. Garnero, R. Jeanloz, and L. Kellogg (1998) The Dʺ discontinuity and its implications. In Gurnis, M., M. Wysession, E. Knittle, and B. Buffett (eds.) The Core-Mantle Boundary Region, AGU, Washington, D.C., U.S.A., pp. 273–298.Google Scholar
  103. Wysession, M.E., A. Langenhorst, M.J. Fouch, K.M. Fischer, G.I. Al-Eqabi, P.J. Shore, and T.J. Clarke (1999) Lateral variations in compressional/shear velocities at the base of the mantle. Science, 284, 120–125.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Edward J. Garnero
    • 1
  • Michael S. Thorne
    • 2
  • Allen McNamara
    • 1
  • Sebastian Rost
    • 3
  1. 1.School of Earth and Space ExplorationArizona State UniversityTempeUSA
  2. 2.Arctic Region Supercomputing CenterUniversity of AlaskaFairbanksUSA
  3. 3.School of Earth and Environment Earth SciencesThe University of LeedsLeedsUK

Personalised recommendations