Multiscale Seismic Tomography of Mantle Plumes and Subducting Slabs

  • Dapeng Zhao


Subduction Zone Mantle Plume Mantle Wedge Lower Mantle Seismic Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abers, G. (2005) Seismic low-velocity layer at the top of subducting slabs: Observations, predictions, and systematics. Phys. Earth Planet. Inter., 149, 7–29.Google Scholar
  2. Ai, Y., T. Zheng, W. Xu, Y. He, and D. Dong (2003) A complex 660 km discontinuity beneath northeast China. Earth Planet. Sci. Lett., 212, 63–71.Google Scholar
  3. Aki, K., and W. Lee (1976) Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes, 1. A homogeneous initial model. J. Geophys. Res., 81, 4381–4399.Google Scholar
  4. Aki, K., A. Christoffersson, and E. Husebye (1977) Determination of the three-dimensional seismic structure of the lithosphere. J. Geophys. Res., 82, 277–296.Google Scholar
  5. Allen, R., G. Nolet, W. Morgan et al. (2002) Imaging the mantle beneath Iceland using integrated seismological techniques. J. Geophys. Res., 107(B12), JB000595.Google Scholar
  6. Anderson, D. (2000) The thermal state of the upper mantle: No role for mantle plumes. Geophys. Res. Lett., 27, 3623–3626.Google Scholar
  7. Bijwaard, H., and W. Spakman (1999) Tomographic evidence for a narrow whole mantle plume below Iceland. Earth Planet. Sci. Lett., 166, 121–126.Google Scholar
  8. Bijwaard, H., W. Spakman, and E. Engdahl (1998) Closing the gap between regional and global travel time tomography. J. Geophys. Res., 103, 30055–30078.Google Scholar
  9. Boschi, L., and A. Dziewonski (1999) High- and low-resolution images of the Earth’s mantle: Implications of different approaches to tomographic modeling. J. Geophys. Res., 104, 25567–25594.Google Scholar
  10. Breger, L., and B. Romanowicz (1998) Three-dimensional structure at the base of the mantle beneath the central Pacific. Science, 282, 718–720.Google Scholar
  11. Cadek, O., D.A. Yuen, V. Steinbach, A. Chopelas, and C. Matyska (1994) Lower mantle thermal structure deduced from seismic tomography, mineral physics and numerical modeling. Earth Planet. Sci. Lett., 121, 385–402.Google Scholar
  12. Condie, K. (2001). Mantle Plumes and Their Record in Earth History, Cambridge University Press, Cambridge, UK, 306pp.Google Scholar
  13. Creager, K., and T. Jordan (1984) Slab penetration into the lower mantle. J. Geophys. Res., 89, 3031–3049.Google Scholar
  14. Creager, K., and T. Jordan (1986) Slab penetration into the lower mantle beneath the Mariana and other island arcs of the Northwest Pacific. J. Geophys. Res., 91, 3573–3589.Google Scholar
  15. Crough, S., and D. Jurdy (1980) Subducted lithosphere, hotspots, and the geoid. Earth Planet. Sci. Lett., 48, 15–22.Google Scholar
  16. Cserepes, L., and D. Yuen (2000) On the possibility of a second kind of mantle plume. Earth Planet. Sci. Lett., 183, 61–71.Google Scholar
  17. de Hoop, M., and R. van der Hilst (2005) On sensitivity kernels for wave equation transmission tomography. Geophys. J. Int., 160, 621–633.Google Scholar
  18. Dziewonski, A. (1984) Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res., 89, 5929–5952.Google Scholar
  19. Dziewonski, A., B. Hager, and R. O’Connell (1977) Large-scale heterogeneities in the lower mantle. J. Geophys. Res., 82, 239–255.Google Scholar
  20. Ellsworth, W., and R. Koyanagi (1977) Three-dimensional crust and mantle structure of Kilauea volcano, Hawaii. J. Geophys. Res., 82, 5379–5394.Google Scholar
  21. Engdahl, E., R. van der Hilst, and R. Buland (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Am., 88, 722–743.Google Scholar
  22. Evans, J. (1982) Compressional wave velocity structure of the upper 350 km under the eastern Snake River Plain near Rexburg, Idaho. J. Geophys. Res., 87, 2654–2670.Google Scholar
  23. Foulger, G. (2003) Plumes, or plate tectonic processes? Astron. Geophys., 43, 6.19–6.23.Google Scholar
  24. Foulger, G., M. Pritchard, B. Julian, and J. Evans (2000) The seismic anomaly beneath Iceland extends down to the mantle transition zone and no deeper. Geophys. J. Int., 142, F1-F5.Google Scholar
  25. Fukao, Y., S. Widiyantoro, and M. Obayashi (2001) Stagnant slabs in the upper and lower mantle transition region. Rev. Geophys., 39, 291–323.Google Scholar
  26. Garnero, E. (2000) Heterogeneity of the lowermost mantle. Annu. Rev. Earth Planet. Sci. 28, 509–537.Google Scholar
  27. Goes, S., W. Spakman, and H. Bijwaard (1999) A lower mantle source for Central European volcanism. Science, 286, 1928–1931.Google Scholar
  28. Grand, S., R. van der Hilst, and S. Widiyantoro (1997) Global seismic tomography: A snapshot of convection in the Earth. GSA Today, 7, 1–7.Google Scholar
  29. Green, H., and P. Burnley (1989) A new self-organizing mechanism for deep-focus earthquakes. Nature, 341, 733–737.Google Scholar
  30. Griffiths, R., and M. Richards (1989) The adjustment of mantle plumes to changes in plate motion. Geophys. Res. Lett., 16, 437–440.Google Scholar
  31. Hansen, U., and D. Yuen (1988) Numerical simulation of thermal chemical instabilities at the core-mantle boundary. Nature, 334, 237–240.Google Scholar
  32. Hasegawa, A., and A. Yamamoto (1994) Deep, low-frequency microearthquakes in or around seismic low-velocity zones beneath active volcanoes in northeastern Japan. Tectonophysics, 233, 233–252.Google Scholar
  33. Hasegawa, A., N. Umino, and A. Takagi (1978) Double-planed deep seismic zone and upper-mantle structure in the northeastern Japan arc. Geophys. J. R. Astron. Soc., 54, 281–296.Google Scholar
  34. Helmberger, D., L. Wen, and X. Ding (1998) Seismic evidence that the source of the Iceland hotspot lies at the core-mantle boundary. Nature, 396, 251–258.Google Scholar
  35. Honda, S., and M. Saito (2003) Small-scale convection under the back-arc occurring in the low viscosity wedge. Earth Planet. Sci. Lett., 216, 703–715.Google Scholar
  36. Honda, S., D.A. Yuen, S. Balachandar, and D. Reuteler (1993) Three-dimensional instabilities of mantle convection with multiple phase transitions. Science, 259, 1308–1311.Google Scholar
  37. Hung, S., Y. Shen, and L. Chiao (2004) Imaging seismic velocity structure beneath the Iceland hotspot: A finite frequency approach. J. Geophys. Res., 109, B08305.Google Scholar
  38. Inoue, H., Y. Fukao, K. Tanabe, and Y. Ogata (1990) Whole mantle P wave travel time tomography. Phys. Earth Planet. Inter., 59, 294–328.Google Scholar
  39. Iyer, H. (1989) Seismic tomography. In James, D. (ed.) The Encyclopedia of Solid Earth Geophysics, Van Nostrand Reinhold, New York, pp. 1131–1151.Google Scholar
  40. Ji, Y., and H. Nataf (1998) Detection of mantle plumes in the lower mantle by diffraction tomography: Hawaii. Earth Planet. Sci. Lett., 159, 99–115.Google Scholar
  41. Kanamori, H. (1971) Great earthquakes at island arcs and the lithosphere. Tectonophysics, 12, 187–198.Google Scholar
  42. Kaneshima, S., and G. Helffrich (2003) Subparallel dipping heterogeneities in the mid-lower mantle. J. Geophys. Res., 108(B5), JB001596.Google Scholar
  43. Kellogg, L., and S. King (1993) Effect of mantle plumes on the growth of Dʺ by reaction between the core and mantle. Geophys. Res. Lett., 20, 379–392.Google Scholar
  44. Keyser, M., J. Ritter, and M. Jordan (2002) 3D shear-wave velocity structure of the Eifel plume, Germany. Earth Planet. Sci. Lett., 203, 59–82.Google Scholar
  45. King, S., and D. Anderson (1995) An alternate mechanism of flood basalt volcanism. Earth Planet. Sci. Lett., 136, 269–279.Google Scholar
  46. King, S., and J. Ritsema (2000) African hot spot volcanism: Small-scale convection in the upper mantle beneath cratons. Science, 290, 1137–1140.Google Scholar
  47. Kirby, S. (1991) Mantle phase changes and deep-earthquake faulting in subducting lithosphere. Science, 252, 216–224.Google Scholar
  48. Knittle, E., and R. Jeanloz (1991) Earth’s core-mantle boundary: Results of experiments at high pressure and temperatures. Science, 251, 1438–1443.Google Scholar
  49. Koper, K., D. Wiens, L. Dorman, J. Hildebrand, and S. Webb (1998) Modeling the Tonga slab: Can travel time data resolve a metastable olivine wedge? J. Geophys. Res., 103, 30079–30100.Google Scholar
  50. Korenaga, J., and T. Jordan (2002) Effects of vertical boundaries on infinite Prandtl number thermal convection. Geophys. J. Int., 147, 639–659.Google Scholar
  51. Laske, G., J. Morgan, and J. Orcutt (1999) First results from the Hawaiian SWELL pilot experiment. Geophys. Res. Lett., 26, 3397–3400.Google Scholar
  52. Lay, T., Q. Williams, and E. Garnero (1998) The core-mantle boundary layer and deep Earth dynamics. Nature, 392, 461–468.Google Scholar
  53. Lei, J., and D. Zhao (2005) P-wave tomography and origin of the Changbai intraplate volcano in Northeast Asia. Tectonophysics, 397, 281–295.Google Scholar
  54. Lei, J., and D. Zhao (2006) A new insight into the Hawaiian plume. Earth Planet. Sci. Lett., 241, 438–453.Google Scholar
  55. Li, X., R. Kind, K. Priestley, S. Sobolev, and F. Tilmann (2000) Mapping the Hawaiian plume conduit with converted seismic waves. Nature, 405, 938–941.Google Scholar
  56. Lithgow-Bertelloni, C., and M. Richards (1998) The dynamics of Cenozoic and Mesozoic plate motions. Rev. Geophys., 36, 27–78.Google Scholar
  57. Loper, D. (1991) Mantle plumes. Tectonophysics, 187, 373–384.Google Scholar
  58. Machetel, P., and P. Weber (1991) Intermittent layered convection in a model mantle with an endothermal phase change at 670 km. Nature, 350, 55–57.Google Scholar
  59. Malamud, B., and D. Turcotte (1999) How many plumes are there? Earth Planet. Sci. Lett., 174, 113–124.Google Scholar
  60. Maruyama, S. (1994) Plume tectonics. J. Geol. Soc. Jpn., 100, 24–49.Google Scholar
  61. Matsuzawa, T., N. Umino, A. Hasegawa, and A. Takagi (1986) Upper mantle velocity structure estimated from PS-converted wave beneath the north–eastern Japan arc. Geophys. J. R. Astron. Soc., 86, 767–787.Google Scholar
  62. McDougall, L. (1971) Volcanic island chains and sea floor spreading. Nature, 231, 141–144.Google Scholar
  63. Mishra, O., D. Zhao, N. Umino, and A. Hasegawa (2003) Tomography of northeast Japan forearc and its implications for interplate seismic coupling. Geophys. Res. Lett., 30(16), GL017736.Google Scholar
  64. Molnar, P., and J. Stock (1987) Relative motions of hotspots in the Pacific, Atlantic, and Indian oceans since late Cretaceous time. Nature, 327, 587–591.Google Scholar
  65. Montagner, J. (1994) Can seismology tell us anything about convection in the mantle? Rev. Geophys., 32, 115–138.Google Scholar
  66. Montelli, R., G. Nolet, G. Master, F. Dahlen, E. Engdahl, and H. Hung (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303, 338–343.Google Scholar
  67. Morgan, W. (1971) Convection plumes in the lower mantle. Nature, 230, 42–43.Google Scholar
  68. Morgan, W. (1972) Deep motions and deep mantle convection. Geol. Soc. Am. Mem., 132, 7–22.Google Scholar
  69. Murakami, M., K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi (2004) Post-perovskite phase transition in MgSiO3. Science, 304, 855–858.Google Scholar
  70. Nakajima, J., and A. Hasegawa (2004) Shear-wave polarization anisotropy and subduction-induced flow in the mantle wedge of northeastern Japan. Earth Planet. Sci. Lett., 225, 365–377.Google Scholar
  71. Nakanishi, I., and D. Anderson (1982) World-wide distribution of group velocity of mantle Rayleigh waves as determined by spherical harmonic inversion. Bull. Seismo. Soc. Am., 72, 1185–1194.Google Scholar
  72. Nataf, H. (2000) Seismic imaging of mantle plumes. Annu. Rev. Earth Planet. Sci., 28, 391–417.Google Scholar
  73. Niu, F., and H. Kawakatsu (1996) Complex structure of mantle discontinuities at the tip of the subducting slab beneath northeast China. J. Phys. Earth, 44, 701–711.Google Scholar
  74. Obara, K. (2002) Nonvolcanic deep tremor associated with subduction in southwest Japan. Science, 296, 1679–1681.Google Scholar
  75. Pilidou, S., K. Priestley, O. Gudmundsson, and E. Debayle (2004) Upper mantle S-wave speed heterogeneity and anisotropy beneath the North Atlantic from regional surface wave tomography: The Iceland and Azores plumes. Geophys. J. Int., 159, 1057–1076.Google Scholar
  76. Priestley, K., and F. Tilmann (1999) Shear-wave structure of the lithosphere above the Hawaiian hotspot from two-station Rayleigh wave phase velocity measurements. Geophys. Res. Lett., 26, 1493–1496.Google Scholar
  77. Richards, M., B. Hager, and N. Sleep (1988) Dynamically supported geoid highs over hotspots: Observation and theory. J. Geophys. Res., 93, 7690–7708.Google Scholar
  78. Ritsema, J., and R. Allen (2003) The elusive mantle plume. Earth Planet. Sci. Lett., 207, 1–12.Google Scholar
  79. Ritsema, J., H. Jan der Heijst, and J. Woodhouse (1999) Complex shear wave velocity structure imaged beneath Africa and Iceland. Science, 286, 1925–1928.Google Scholar
  80. Ritter, J., M. Jordan, U. Christensen, and U. Achauer (2001) A mantle plume below the Eifel volcanic field, Germany. Earth Planet. Sci. Lett., 186, 7–14.Google Scholar
  81. Rogers, G., and H. Dragert (2003) Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. Science, 300, 1942–1943.Google Scholar
  82. Romanowicz, B. (2003) Global mantle tomography: Progress status in the past 10 years. Ann. Rev. Earth Planet. Sci., 31, 303–328.Google Scholar
  83. Russell, S., T. Lay, and E. Garnero (1999) Small scale lateral shear velocity and anisotropy heterogeneity near the core-mantle boundary beneath the central Pacific imaged using broadband ScS waves. J. Geophys. Res., 104, 13183–13199.Google Scholar
  84. Saltzer, R., and E. Humphreys (1997) Upper mantle P wave velocity structure of the eastern Snake River Plain and its relationship to geodynamic models of the region. J. Geophys. Res., 102, 11829–11842.Google Scholar
  85. Schutt, D., and E. Humphreys (2004) P and S wave velocity and Vp/Vs in the wake of the Yellowstone hot spot. J. Geophys. Res., 109, B01305.Google Scholar
  86. Shen, Y., S. Solomon, I. Bjarnason, and G. Nolet (2002) Seismic evidence for a tilted mantle plume and north–south mantle flow beneath Iceland. Earth Planet. Sci. Lett., 197, 261–272.Google Scholar
  87. Sleep, N. (1990) Hotspots and mantle plumes: Some phenomenology. J. Geophys. Res., 95, 6715–6736.Google Scholar
  88. Stachnik, J., G. Abers, and D. Christensen (2004) Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone. J. Geophys. Res., 109(B10), B10304.Google Scholar
  89. Stacey, F., and D. Loper (1983) The thermal boundary layer interpretation of Dʺ and its role as a plume source. Phys. Earth Planet. Inter., 33, 45–50.Google Scholar
  90. Stefanick, M., and D. Jurdy (1984) The distribution of hot spots. J. Geophys. Res., 89, 9919–9925.Google Scholar
  91. Steinberger, B. (2000) Plumes in a convecting mantle: Models and observations for individual hotspots. J. Geophys. Res., 105, 11127–11152.Google Scholar
  92. Stern, R. (2002) Subduction zones. Rev. Geophys., 40(4), RG000108.Google Scholar
  93. Stixrude, L. (1998) Elastic constants and anisotropy of MgSiO3 perovskite, periclase, and SiO2 at high pressure. In Gurnis, M., B. Buffett, K. Knittle, M. Wysession (eds.) The Core-Mantle Boundary, AGU, pp. 83–96.Google Scholar
  94. Su, W., R. Woodward, and A. Dziewonski (1994) Degree 12 model of shear velocity heterogeneity in the mantle. J. Geophys. Res., 99, 6945–6980.Google Scholar
  95. Tajima, F., Y. Fukao, M. Obayashi, and T. Sakurai (1998) Evaluation of slab images in the northwestern Pacific. Earth Planets Space, 50, 953–964.Google Scholar
  96. Tamura, Y., Y. Tatsumi, D. Zhao, Y. Kido, and H. Shukuno (2002) Hot fingers in the mantle wedge: new insight into magma genesis in subduction zones. Earth Planet. Sci. Lett., 197, 105–116.Google Scholar
  97. Tanimoto, T., and D.Anderson (1984) Mapping convection in the mantle. Geophys. Res. Lett., 11, 287–290.Google Scholar
  98. Tarduno, J., and R. Cottrell (1997) Paleomagnetic evidence for motion of the Hawaiian hotspot during formation of the Emperor seamounts. Earth Planet. Sci. Lett., 153, 171–180.Google Scholar
  99. Tatsumi, Y., S. Maruyama, and S. Nohda (1990) Mechanism of backarc opening in the Japan Sea: Role of asthenospheric injection. Tectonophysics, 181, 299–306.Google Scholar
  100. Thompson, P., and P. Tackley (1998) Generation of mega-plumes from the core-mantle boundary in a compressible mantle with temperature-dependent viscosity. Geophys. Res. Lett., 25, 1999–2002.Google Scholar
  101. Thurber, C. (1983) Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California. J. Geophys. Res., 88, 8226–8236.Google Scholar
  102. Thurber, C., and K. Aki (1987) Three-dimensional seismic imaging. Ann. Rev. Earth Planet. Sci., 15, 115–139.Google Scholar
  103. Tilmann, F., H. Benz, K. Priestley, and P. Okubo (2001) P-wave velocity structure of the uppermost mantle beneath Hawaii from travel time tomography. Geophys. J. Int., 146, 594–606.Google Scholar
  104. Tryggvason, K., E. Husebye, and R. Stefansson (1983) Seismic image of the hypothesized Icelandic hot spot. Tectonophysics, 100, 97–118.Google Scholar
  105. Tsuchiya, T., J. Tsuchiya, K. Umemoto, and R. Wentzcovitch (2004) Phase transition in MgSiO3 perovskite in the earth’s lower mantle. Earth Planet. Sci. Lett., 224, 241–248.Google Scholar
  106. Tsumura, N., S. Matsumoto, S. Horiuchi, and A. Hasegawa (2000) Three-dimensional attenuation structure beneath the northeastern Japan arc estimated from spectra of small earthquakes. Tectonophysics, 319, 241–260.Google Scholar
  107. Turcotte, D., and E. Oxburgh (1973) Mid-plate tectonics. Nature, 244, 337–339.Google Scholar
  108. Turcotte, D., and G. Schubert (1982) Geodynamics, John Wiley and Sons Press, New York, 450pp.Google Scholar
  109. Umino, N., A. Hasegawa, and T. Matsuzawa (1995) sP depth phase at small epicentral distances and estimated subducting plate boundary. Geophys. J. Int., 120, 356–366.Google Scholar
  110. Ukawa, M., and K. Obara (1993) Low frequency earthquakes around Moho beneath the volcanic front in the Kanto district, central Japan. Bull. Volcanol. Soc. Jpn., 38, 187–197.Google Scholar
  111. van der Hilst, R., and M. de Hoop (2005) Banana-doughnut kernels and mantle tomography. Geophys. J. Int., 163, 956–961.Google Scholar
  112. van der Hilst, R., S. Widiyantoro, and E. Engdahl (1997) Evidence for deep mantle circulation from global tomography. Nature, 386, 578–584.Google Scholar
  113. Van der Voo, R., W. Spakman, and H. Bijwaard (1999a) Mesozoic subducted slabs under Siberia. Nature, 397, 246–249.Google Scholar
  114. Van der Voo, R., W. Spakman, and H. Bijwaard (1999b) Tethyan subducted slabs under India. Earth Planet. Sci. Lett., 171, 7–20.Google Scholar
  115. Vasco, D., L. Johnson, and R. Pulliam (1995) Lateral variations in mantle velocity structure and discontinuities determined from P, PP, S, SS, and SS-SdS travel time residuals. J. Geophys. Res., 100, 24037–24059.Google Scholar
  116. Vinnik, L., L. Breger, and B. Romanowicz (1998) Anisotropic structures at the base of the mantle. Nature, 393, 564–567.Google Scholar
  117. Vogt, P. (1981) On the applicability of thermal conduction models to mid-plate volcanism, comments on a paper by Gass et al. J. Geophys. Res., 86, 950–960.Google Scholar
  118. Wang, Z., and D. Zhao (2005) Seismic imaging of the entire arc of Tohoku and Hokkaido in Japan using P-wave, S-wave and sP depth-phase data. Phys. Earth Planet. Inter., 152, 144–162.Google Scholar
  119. Weinstein, S., and P. Olson (1989) The proximity of hotspots to convergent and divergent plate boundaries. Geophys. Res. Lett., 16, 433–436.Google Scholar
  120. Williams, Q., and E. Garnero (1996) Seismic evidence for partial melt at the base of Earth’s mantle. Science, 273, 1528–1530.Google Scholar
  121. Wilson, J. (1963) A possible origin of the Hawaiian islands. Can. J. Phys., 41, 863–870.Google Scholar
  122. Wilson, J. (1973) Mantle plumes and plate motions. Tectonophysics, 19, 149–164.Google Scholar
  123. Wolfe, C., I. Bjarnason, J. VanDecar, and S. Soloman (1997) Seismic structure of the Iceland mantle plume. Nature, 385, 245–247.Google Scholar
  124. Wolfe, C., S. Solomon, P. Silver, J. VanDecar, and R. Russo (2002) Inversion of body-wave delay times for mantle structure beneath the Hawaiian islands: Results from the PELENET experiment. Earth Planet. Sci. Lett., 198, 129–145.Google Scholar
  125. Woodhouse, J., and A. Dziewonski (1984) Mapping the upper mantle: Three-dimensional modeling of earth structure by inversion of seismic waveforms. J. Geophys. Res., 89, 5953–5986.Google Scholar
  126. Woods, M., and E. Okal (1996) Rayleigh-wave dispersion along the Hawaiian swell: A test of lithospheric thinning by thermal rejuvenation at a hotspot. Geophys. J. Int., 125, 325–339.Google Scholar
  127. Woodward, R., and G. Master (1991) Lower mantle structure from ScS-S differential travel times. Nature, 352, 231–233.Google Scholar
  128. Wysession, M., T. Lay, and J. Revenaugh (1998) The Dʺ discontinuity and its implications. In Gurnis, M., B. Buffett, K. Knittle, M. Wysession (eds.) The Core-Mantle Boundary, AGU, pp. 273–297.Google Scholar
  129. Yuan, H., and K. Dueker (2005) Teleseismic P-wave tomogram of the yellowstone plume. Geophys. Res. Lett., 32(7), L07304.Google Scholar
  130. Yuen, D., O. Cadek, A. Chopelas, and C. Matyska (1993) Geophysical inferences of thermal-chemical structures in the lower mantle. Geophys. Res. Lett., 20, 899–902.Google Scholar
  131. Zhang, Y., and T. Tanimoto (1993) High-resolution global upper mantle structure and plate tectonics. J. Geophys. Res., 98, 9793–9823.Google Scholar
  132. Zhao, D. (2001a) New advances of seismic tomography and its applications to subduction zones and earthquake fault zones. The Island Arc, 10, 68–84.Google Scholar
  133. Zhao, D. (2001b) Seismological structure of subduction zones and its implications for arc magmatism and dynamics. Phys. Earth Planet. Inter., 127, 197–214.Google Scholar
  134. Zhao, D. (2001c) Seismic structure and origin of hotspots and mantle plumes. Earth Planet. Sci. Lett., 192, 251–265.Google Scholar
  135. Zhao, D. (2004) Global tomographic images of mantle plumes and subducting slabs: Insight into deep Earth dynamics. Phys. Earth Planet. Inter., 146, 3–34.Google Scholar
  136. Zhao, D., A. Hasegawa, and S. Horiuchi (1992) Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. J. Geophys. Res., 97, 19909–19928.Google Scholar
  137. Zhao, D., A. Hasegawa, and H. Kanamori (1994) Deep structure of Japan subduction zone as derived from local, regional and teleseismic events. J. Geophys. Res., 99, 22313–22329.Google Scholar
  138. Zhao, D., D. Christensen, and H. Pulpan (1995) Tomographic imaging of the Alaska subduction zone. J. Geophys. Res., 100, 6487–6504.Google Scholar
  139. Zhao, D., Y. Xu, D. Wiens, L. Dorman, J. Hildebrand, and S. Webb (1997) Depth extent of the Lau back-arc spreading center and its relation to subduction processes. Science, 278, 254–257.Google Scholar
  140. Zhao, D., K. Asamori, and H. Iwamori (2000) Seismic structure and magmatism of the young Kyushu subduction zone. Geophys. Res. Lett., 27, 2057–2060.Google Scholar
  141. Zhao, D., O.P. Mishra, and R. Sanda (2002) Influence of fluids and magma on earthquakes: Seismological evidence. Phys. Earth Planet. Inter., 132, 249–267.Google Scholar
  142. Zhao, D., J. Lei, and R. Tang (2004) Origin of the Changbai intraplate volcanism in Northeast China: Evidence from seismic tomography. Chinese Sci. Bull., 49, 1401–1408.Google Scholar
  143. Zhao, D., S. Todo, and J. Lei (2005) Local earthquake reflection tomography of the Landers aftershock area. Earth Planet. Sci. Lett., 235, 623–631.Google Scholar
  144. Zhao, D., J. Lei, T. Inoue, A. Yamada, and S. Gao (2006) Deep structure and origin of the Baikal rift zone. Earth Planet. Sci. Lett., 243, 681–691.Google Scholar
  145. Zhou, H. (1996) A high-resolution P wave model for the top 1200 km of the mantle. J. Geophys. Res., 101, 27791–27810.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Dapeng Zhao
    • 1
  1. 1.Geodynamics Research CenterEhime UniversityJapan

Personalised recommendations