Dune Morphology and Dynamics

  • Nicholas Lancaster

Sand dunes form part of a hierarchical self-organized system of aeolian bedforms which comprises: (i) wind ripples (spacing 0.1–1 m), (ii) individual simple dunes or superimposed dunes on mega dunes (also called draa or compound and complex dunes) (spacing 50–500 m), and (iii) mega dunes (spacing < 500 m). Most dunes occur in contiguous areas of aeolian deposits called ergs or sand seas (with an area of < 100 km2). Smaller areas of dunes are called dune fields. Major sand seas occur in the old world deserts of the Sahara, Arabia, central Asia, Australia, and southern Africa, where sand seas cover between 20 and 45% of the area classified as arid (Fig. 18.1). In North and South America there are no large sand seas, and dunes cover less than 1% of the arid zone. The majority of dunes are composed of quartz and feldspar grains of sand size, although dunes composed of gypsum, carbonate, and volcaniclastic sand, as well as clay pellets, also occur.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J.R.L., 1974. Reaction, relaxation and lag in natural sedimentary systems: general principles, examples and lessons. Earth Science Reviews, 10: 263–342.Google Scholar
  2. Anderson, R.S., 1987. A theoretical model for aeolian impact ripples. Sedimentology, 34: 943–956.Google Scholar
  3. Anderson, R.S., 1988. The pattern of grainfall deposition in the lee of aeolian dunes. Sedimentology, 35(2): 175–188.Google Scholar
  4. Anderson, R.S., 1990. Eolian ripples as examples of self-organization in geomorphological systems. Earth Science Reviews, 29: 77–96.Google Scholar
  5. Anderson, R.S. and Bunas, K.L., 1993. Grain size segregation and stratigraphy in aeolian ripples modeled with a cellular automaton. Nature, 365: 740–743.Google Scholar
  6. Andreotti, B., Claudin, P., and Douady, S., 2002. Selection of dune shapes and velocities. Part I: Dynamics of sand, wind, and barchans. European Physics Journal, 28 B.Google Scholar
  7. Andrews, S., 1981. Sedimentology of Great Sand Dunes, Colorado. In: F.P. Ethridge and R.M. Flores (Eds.), Recent and Ancient Non Marine Depositional Environments: models for exploration. The Society of Economic Paleontologists and Mineralogists, Tulsa, OK, pp. 279–291.Google Scholar
  8. Anton, D. and Vincent, P., 1986. Parabolic dunes of the Jafurah Desert, Eastern Province, Saudi Arabia. Journal of Arid Environments, 11: 187–198.Google Scholar
  9. Ash, J.E. and Wasson, R.J., 1983. Vegetation and sand mobility in the Australian desert dunefield. Zeitschrift fur Geomorphologie Supplement, 45: 7–25.Google Scholar
  10. Bagnold, R.A., 1941. The Physics of Blown Sand and Desert Dunes. Chapman and Hall, London, 265pp.Google Scholar
  11. Bagnold, R.A., 1953. The surface movement of blown sand in relation to meteorology, Desert Research, Proceedings of the International Symposium. Research Council of Israel, Jerusalem, pp. 89–93.Google Scholar
  12. Besler, H., 1980. Die Dunen-Namib: entstehung und dynamik eines ergs. Stuttgarter Geographische Studien, 96: 241.Google Scholar
  13. Beveridge, C., Kocurek, G., Ewing, R., Lancaster, N., Morthekai, P., Singhvi, A. and Mahan, S., 2006. Development of spatially diverse and complex dune-field patterns: Gran Desierto Dune Field, Sonora, Mexico: Sedimentology, 53: 1391–1409.Google Scholar
  14. Blount, G. and Lancaster, N., 1990. Development of the Gran Desierto Sand Sea. Geology, 18: 724–728.Google Scholar
  15. Boulton, J.W., 1997. Quantifying the morphology of aeolian impact ripples formed in a natural dune setting, University of Guelph, Guelph, Ontario, Canada, 172pp.Google Scholar
  16. Breed, C.S., Fryberger, S.G., Andrews, S., McCauley, C., Lennartz, F., Geber, D. and Horstman, K., 1979. Regional studies of sand seas using LANDSAT (ERTS) imagery, In: McKee, E.D. (Ed.), A Study of Global Sand Seas: USGS Professional Paper, 1052, pp. 305–398.Google Scholar
  17. Breed, C.S. and Grow, T., 1979. Morphology and distribution of dunes in sand seas observed by remote sensing. In: E.D. McKee (Editor), A Study of Global Sand Seas. Professional Paper. United States Geological Survey Professional Paper 1052, pp. 253-304.Google Scholar
  18. Breed, C.S., McCauley, J.F. and Davis, P.A., 1987. Sand sheets of the eastern Sahara and ripple blankets on Mars. In: L.E. Frostick and I. Reid (Eds.), Desert Sediments: Ancient and Modern. Blackwell Scientific Publications, Oxford, London, Edinburgh, Boston, Palo Alto, Melbourne, pp. 337–359.Google Scholar
  19. Bristow, C.S., Bailey, S.D. and Lancaster, N., 2000. Sedimentary structure of linear sand dunes. Nature, 406: 56–59.Google Scholar
  20. Bristow, C.S., Duller, G.A.T. and Lancaster, N., 2005. Combining ground penetrating radar surveys and optical dating to determine dune migration in Namibia. Journal of the Geological Society (London), 162(2): 315–321.Google Scholar
  21. Bristow, C.S., Duller, G.A.T. and Lancaster, N., 2007. Age and dynamics of linear dunes in the Namib Desert. Geology, 35:555–558.Google Scholar
  22. Bristow, C.S. and Lancaster, N., 2004. Movement of a small slipfaceless dome dune in the Namib Sand Sea, Namibia. Geomorphology, 59: 189–196.Google Scholar
  23. Bullard, J.E. and Nash, D.J., 1998. Linear dune pattern variability in the vicinity of dry valleys in the southwest Kalahari. Geomorphology, 23: 35–54.Google Scholar
  24. Bullard, J.E., Thomas, D.S.G., Livingstone, I. and Wiggs, G.F.S., 1995. Analysis of linear sand dune morphological variability, southwestern Kalahari Desert. Geomorphology, 11: 189–203.Google Scholar
  25. Bullard, J.E., Thomas, D.S.G., Livingstone, I. and Wiggs, G.F.S., 1997. Dunefield activity and interactions with climatic variability in the southwest Kalahari Desert. Earth Surface Processes and Landforms, 22(2): 165–174.Google Scholar
  26. Burkinshaw, J.R., Illenberger, W.K. and Rust, I.C., 1993. Wind speed profiles over a reversing transverse dune. In: K. Pye (Ed.), The Dynamics and Environmental Context of Aeolian Sedimentary Systems. Geological Society, London, pp. 25–36.Google Scholar
  27. Cooper, W.S., 1958. Coastal Sand Dunes of Oregon and Washington. Geological Society of America Memoir, 72: 167.Google Scholar
  28. Corbett, I., 1993. The modern and ancient pattern of sandflow through the southern Namib deflation basin. International Association of Sedimentologists Special Publication, 16: 45–60.Google Scholar
  29. Cupp, K., Lancaster, N. and Nickling, W.G., 2004. A Dune Simulation Wind Tunnel for Studies of Lee Face Processes. Eos, Transactions American Geophysical Union, 85(47, Fall Meeting Supplement): Abstract P31B-0989.Google Scholar
  30. Dong, Z., Wang, T. and Wang, X., 2004. Geomorphology of megadunes in the Badain Jaran Desert. Geomorphology, 60(1–2): 191–204.Google Scholar
  31. Elbelrhiti, H., Claudin, P. and Andreotti, B., 2005. Field evidence for surface-wave-instability of sand dunes. Nature, 437: 720–723.Google Scholar
  32. Ellwood, J.M., Evans, P.D. and Wilson, I.G., 1975. Small scale aeolian bedforms. Journal of Sedimentary Petrology, 45: 554–561.Google Scholar
  33. Embabi, N.S., 1982. Barchans of the Kharga Depression. In: F. El Baz and T.A. Maxwell (Eds.), Desert Landfroms of Egypt: a basis for comparison with Mars. NASA, Washington D.C., pp. 141–156.Google Scholar
  34. Embabi, N.S. and Ashour, M.M., 1993. Barchan dunes in Qatar. Journal of Arid Environments, 25; 49–69.Google Scholar
  35. Endrody-Younga, S., 1982. Dispersion and translocation of dune specialist tenebrionids in the Namib area. Cimbebasia (A), 5: 257-271.Google Scholar
  36. Eriksson, P.G., Nixon, N., Snyman, C.P. and Bothma, J.d.P., 1989. Ellipsoidal parabolic dune patches in the southern Kalahari Desert. Journal of Arid Environments, 16: 111–124.Google Scholar
  37. Ewing, R.C., Kocurek, G. and Lake.L.W., 2006. Pattern analysis of dune-field parameters. Earth Surface Processes and Landforms, 31(9): 1176–1191.Google Scholar
  38. Finkel, H.J., 1959. The barchans of Southern Peru. Journal of Geology, 67: 614–647.Google Scholar
  39. Folk, R., 1970. Longitudinal dunes of the northwestern edge of the Simpson Desert, Northern Territory, Australia, 1. geomorphology and grain size relationships. Sedimentology, 16: 5–54.Google Scholar
  40. Frank, A. and Kocurek, G., 1996a. Airflow up the stoss slope of sand dunes: limitations of current understanding. Geomorphology, 17(1–3): 47–54.Google Scholar
  41. Frank, A. and Kocurek, G., 1996b. Towards a model for airflow on the lee side of aeolian dunes. Sedimentology, 43(3): 451–458.Google Scholar
  42. Fryberger, S., Ahlbrandt, T. and Andrews, S., 1979. Origin, sedimentary features, and significance of low-angle eolian “sand sheet” deposits, Great Sand Dunes National Monument and vicinity, Colorado. Journal of Sedimentary Petrology, 49(3): 733–746.Google Scholar
  43. Fryberger, S. and Goudie, A.S., 1981. Arid Geomorphology. Progress in Physical Geography, 5(3): 420–428.Google Scholar
  44. Fryberger, S.G., 1979. Dune forms and wind regimes. In: E.D. McKee (Ed.), A Study of Global Sand Seas: United States Geological Survey, Professional Paper. U.S.G.S. Professional Paper, pp. 137–140.Google Scholar
  45. Fryberger, S.G. and Ahlbrandt, T.S., 1979. Mechanisms for the formation of aeolian sand seas. Zeitschrift für Geomorphologie, 23: 440–460.Google Scholar
  46. Fryberger, S.G., Al-Sari, A.M., Clisham, T.J., Rizoi, S.A.R. and Al-Hinai, K.G., 1984. Wind sedimentation in the Jafarah sand sea, Saudi Arabia. Sedimentology, 31(3): 413–431.Google Scholar
  47. Fryberger, S.G., Hesp, P. and Hastings, K., 1992. Aeolian granule ripple deposits, Namibia. Sedimentology, 39: 319–331.Google Scholar
  48. Gay, S.P., Jr., 1999. Observations regarding the movement of barchan sand dunes in the Nazca to Tanaca area of southern Peru. Geomorphology, 27(3–4): 279–294.Google Scholar
  49. Glennie, K.W., 1970. Desert Sedimentary Environments. Developments in Sedimentology, 14. Elsevier, Amsterdam, 222pp.Google Scholar
  50. Goudie, A.S., Livingstone, I. and Stokes, S. (Eds.), 1999. Aeolian Environments, Sediments, and Landforms. John Wiley & Sons, Chichester, 325pp.Google Scholar
  51. Greeley, R. and Iversen, J.D., 1985. Wind as a Geological Process. Cambridge University Press, Cambridge, 333pp.Google Scholar
  52. Hack, J.T., 1941. Dunes of the Western Navajo County. Geographical Review, 31(2): 240–263.Google Scholar
  53. Haff, P.K. and Presti, D.E., 1995. Barchan dunes of the Salton Sea region, California. In: V.P. Tchakerian (Ed.), Desert Aeolian Processes. Chapman and Hall, New York,pp. 153–178.Google Scholar
  54. Hanna, S.R., 1969. The formation of longitudinal sand dunes by large helical eddies in the atmosphere. Journal of Applied Meteorology, 8: 874–883.Google Scholar
  55. Hastenrath, S., 1987. The barchan dunes of Southern Peru revisited. Zeitschrift fur Geomorphologie, 31(2): 167–178.Google Scholar
  56. Hastenrath, S.L., 1967. The barchans of the Arequipa region, Southern Peru. Zeitschrift fur Geomorphologie, 11: 300–311.Google Scholar
  57. Havholm, K.G. and Kocurek, G., 1988. A preliminary study of the dynamics of a modern draa, Algodones, southeastern California, USA. Sedimentology, 35: 649–669.Google Scholar
  58. Haynes, C.V.J., 1989. Bagnold’s barchan: a 57-yr record of dune movement in the eastern Sahara and implications for dune origin and palaeoclimate since Neolithic times. Quaternary Research, 32(2): 153–167.Google Scholar
  59. Hersen, P., Anderson, K.H., Elbelrhiti, B., Andreotti, B., Claudin, P. and Douady, S., 2004. Corridors of barchan dunes: stability and size selection. Physics Review, E, 69: 011304.Google Scholar
  60. Hersen, P. and Douady, S., 2005. Collision of barchan dunes as a mechanism of size regulation. Geophysical Research Letters, 34(21): L21403.Google Scholar
  61. Hesse, P.P. and Simpson, R.L., 2006. Variable vegetation cover and episodic sand movement on longitudinal desert dunes. Geomorphology, 81: 276–291.Google Scholar
  62. Holm, D.A., 1960. Desert geomorphology in the Arabian Peninsula. Science, 123: 1369–1379.Google Scholar
  63. Howard, A.D., 1977. Effect of slope on the threshold of motion and its application to orientation of wind ripples. Geological Society of America Bulletin, 88: 853–856.Google Scholar
  64. Howell, J. and Mountney, N., 2001. Aeoian grain flow architecture: hard data for reservoir models and implications for red bed sequence stratigraphy. Petroleum Geoscience, 7: 51–56.Google Scholar
  65. Hunt, J.C.R., Leibovich, S. and Richards, K.J., 1988. Turbulent shear flows over low hills. Quarterly Journal of the Royal Meteorological Society, 114: 1435–1470.Google Scholar
  66. Hunter, R.E., 1977. Basic types of stratification in small eolian dunes. Sedimentology, 24: 361–388.Google Scholar
  67. Hunter, R.E., 1985. A kinematic model for the structure of lee-side deposits. Sedimentology, 32: 409–422.Google Scholar
  68. Hunter, R.E., Richmond, B.M. and Alpha, T.R., 1983. Storm-controlled oblique dunes of the Oregon Coast. Geological Society of America Bulletin, 94: 1450–1465.Google Scholar
  69. Inman, D.L., Ewing, G.C. and Corliss, J.B., 1966. Coastal sand dunes of Guerrero Negro, Baja California, Mexico. Geological Society of America, Bulletin, 77: 787–802.Google Scholar
  70. Jackson, P.S. and Hunt, J.C.R., 1975. Turbulent wind flow over a low hill. Quarterly Journal of the Royal Meteorological Society, 101: 929–955.Google Scholar
  71. Jäkel, D., 1980. Die bildung von barchanen in Faya-Largeau/Rep. du Tchad. Zeitschrift für Geomorphologie, N.F., 24: 141–159.Google Scholar
  72. Jensen, N.O. and Zeman, O., 1985. Perturbations to mean wind and turbulence in flow over topographic forms. In: O.E. Barndorff-Nielsen, J.T. Møller, K.R. Rasmussen and B.B. Willetts (Eds.), Proceedings of International Workshop on the Physics of Blown Sand. University of Aarhus, Aarhus, pp. 351–368.Google Scholar
  73. Kar, A., 1993. Aeolian processes and bedforms in the Thar Desert. Journal of Arid Environments, 25: 83–96.Google Scholar
  74. Kocurek, G., 1998. Aeolian System Response to External Forcing Factors – A Sequence Stratigraphic View of the Saharan Region. In: A.S. Alsharan, K.W. Glennie, G.L. Whittle and C.G.S.C. Kendall (Eds.), Quaternary Deserts and Climatic Change. Balkema, Rotterdam/Brookfield, pp. 327–338.Google Scholar
  75. Kocurek, G. and Ewing, R.C., 2005. Aeolian dune field self-organization – implications for the formation of simple versus complex dune field patterns. Geomorphology, 72: 94–105.Google Scholar
  76. Kocurek, G., Havholm, K.G., Deynoux, M. and Blakey, R.C., 1991. Amalgamated accumulations resulting from climatic and eustatic changes, Akchar Erg, Mauritania. Sedimentology, 38(4): 751–772.Google Scholar
  77. Kocurek, G. and Lancaster, N., 1999. Aeolian Sediment States: Theory and Mojave Desert Kelso Dunefield example. Sedimentology, 46(3): 505–516.Google Scholar
  78. Kocurek, G. and Nielson, J., 1986. Conditions favourable for the formation of warm-climate aeolian sand sheets. Sedimentology, 33: 795–816.Google Scholar
  79. Kocurek, G., Townsley, M., Yeh, E., Havholm, K. and Sweet, M.L., 1992. Dune and dunefield development on Padre Island, Texas, with implications for interdune deposition and water-table-controlled accumulation. Journal of Sedimentary Petrology, 62(4): 622–635.Google Scholar
  80. Lancaster, N., 1980. The formation of seif dunes from barchans - supporting evidence for Bagnold’s hypothesis from the Namib Desert. Zeitschrift fur Geomorphologie, 24: 160–167.Google Scholar
  81. Lancaster, N., 1982a. Dunes on the Skeleton Coast, SWA/ Namibia: geomorphology and grain size relationships. Earth Surface Processes and Landforms, 7: 575–587.Google Scholar
  82. Lancaster, N., 1982b. Linear dunes. Progress in Physical Geography, 6: 476–504.Google Scholar
  83. Lancaster, N., 1983. Controls of dune morphology in the Namib sand sea. In: T.S. Ahlbrandt and M.E. Brookfield (Eds.), Eolian Sediments and Processes. Developments in Sedimentology. Elsevier, Amsterdam, pp. 261–289.Google Scholar
  84. Lancaster, N., 1985. Variations in wind velocity and sand transport rates on the windward flanks of desert sand dunes. Sedimentology, 32: 581–593.Google Scholar
  85. Lancaster, N., 1988. Controls of eolian dune size and spacing. Geology, 16: 972–975.Google Scholar
  86. Lancaster, N., 1989a. Star Dunes. Progress in Physical Geography, 13(1): 67–92.Google Scholar
  87. Lancaster, N., 1989b. The Namib Sand Sea: Dune forms, processes, and sediments. A.A. Balkema, Rotterdam, 200pp.Google Scholar
  88. Lancaster, N., 1991. The orientation of dunes with respect to sand-transporting winds: a test of Rubin and Hunter’s gross bedform-normal rule, NATO Advanced Research Workshop on sand, dust, and soil in their relation to aeolian and littoral processes. University of Aarhus, Sandbjerg, Denmark, pp. 47-49.Google Scholar
  89. Lancaster, N., 1992. Relations between dune generations in the Gran Desierto, Mexico. Sedimentology, 39: 631–644.Google Scholar
  90. Lancaster, N., 1993. Origins and sedimentary features of supersurfaces in the northwestern Gran Desierto Sand Sea. IAS Special Publication, 16: 71–86.Google Scholar
  91. Lancaster, N., 1995a. Geomorphology of Desert Dunes. Routledge, London, 290pp.Google Scholar
  92. Lancaster, N., 1995b. Origin of the Gran Desierto Sand Sea: Sonora, Mexico: Evidence from dune morphology and sediments. In: V.P. Tchakerian (Ed.), Desert Aeolian Processes. Chapman and Hall, New York, pp. 11–36.Google Scholar
  93. Lancaster, N., 1996. Field studies of proto-dune initiation on the northern margin of the Namib Sand Sea. Earth Surface Processes and Landforms, 21: 947–954.Google Scholar
  94. Lancaster, N., 1999. Sand Seas. In: A.S. Goudie, I. Livingstone and S. Stokes (Eds.), Aeolian Environments, Sediments, and Landforms. Wiley, Chichester, New York, pp. 49–70.Google Scholar
  95. Lancaster, N. and Baas, A., 1998. Influence of vegetation cover on sand transport by wind: field studies at Owens Lake, California. Earth Surface Processes and Landforms, 23(1): 69–82.Google Scholar
  96. Lancaster, N., Greeley, R. and Christensen, P.R., 1987. Dunes of the Gran Desierto Sand Sea, Sonora, Mexico. Earth Surface Processes and Landforms, 12: 277–288.Google Scholar
  97. Lancaster, N., Kocurek, G., Singhvi, A.K., Pandey, V., Deynoux, M., Ghienne, J.-P. and Lo, K., 2002. Late Pleistocene and Holocene dune activity and wind regimes in the western Sahara of Mauritania. Geology, 30: 991–994.Google Scholar
  98. Lancaster, N., Nickling, W.G., McKenna Neuman, C.K. and Wyatt, V.E., 1996. Sediment flux and airflow on the stoss slope of a barchan dune. Geomorphology, 17(1–3): 55–62.Google Scholar
  99. Livingstone, I., 1986. Geomorphological significance of wind flow patterns over a Namib linear dune. In: W.G. Nickling (Ed.), Aeolian Geomorphology. Boston, Allen and Unwin, pp. 97–112.Google Scholar
  100. Livingstone, I., 1988. New models for the formation of linear sand dunes. Geography, 73: 105–115.Google Scholar
  101. Livingstone, I., 1989. Monitoring surface change on a Namib linear dune. Earth Surface Processes and Landforms, 14: 317–332.Google Scholar
  102. Livingstone, I., 1993. A decade of surface change on a Namib linear dune. Earth Surface Processes and Landforms, 18(7): 661–664.Google Scholar
  103. Livingstone, I., 2003. A twenty-one-year record of surface change on a Namib linear dune. Earth Surface Processes and Landforms, 28(9): 1025–1032.Google Scholar
  104. Livingstone, I. and Warren, A., 1996. Aeolian Geomorphology: an introduction. Addison Wesley Longman, Harlow, 211pp.Google Scholar
  105. Livingstone, I., Wiggs, G.F.S. and Weaver, C.M., 2007. Geomorphology of desert sand dunes: A review of recent progress. Earth Science Reviews, 80(3–4): 239–257.Google Scholar
  106. Long, J.T. and Sharp, R.P., 1964. Barchan dune movement in Imperial Valley, California. Geological Society of America Bulletin, 75: 149–156.Google Scholar
  107. Mainguet, M., 1983. Dunes vives, dunes fixées, dunes vêtues: une classification selon le bilan d’alimentation, le régime éolien et la dynamique des édifices sableux. Zeitschrift für Geomorphologie, Suppl. Bd. 45: 265–285.Google Scholar
  108. Mainguet, M., 1984a. A classification of dunes based on aeolian dynamics and the sand budget. In: F. El-Baz (Ed.), Deserts and arid lands. Martinus Nijhoff, The Haguw, pp. 31–58.Google Scholar
  109. Mainguet, M., 1984b. Space observations of Saharan aeolian dynamics. In: F. El Baz (Ed.), Deserts and Arid Lands. Nyhoff, The Hague, pp. 59–77.Google Scholar
  110. Mainguet, M. and Callot, Y., 1978. L’erg de Fachi-Bilma (Tchad-Niger). Mémoires et Documents CNRS, 18: 178.Google Scholar
  111. Mainguet, M. and Chemin, M.-C., 1984. Les dunes pyramidales du Grand Erg Oriental. Travaux de l’Institut de Géographie de Reims, 59–60: 49–60.Google Scholar
  112. Marîn, L., Forman, S.L., Valdez, A. and Bunch, F., 2005. Twentieth century dune migration at the Great Sand Dunes National Park and Preserve, Colorado, relation to drought variability. Geomorphology, 70: 163–183.Google Scholar
  113. Marticorena, B., Kardous, M., Bergametti, G., Callot, Y., Chazette, P., Khatteli, H., Hegarat-Mascle, S.L., Maille, M., Rajot, J.-L., Vidal-Madjar, D. and Zribi, M., 2006. Surface and aerodynamic roughness in arid and semiarid areas and their relation to radar backscatter coefficient. Journal of Geophysical Research, 111: F03017.Google Scholar
  114. Mason, P.J. and Sykes, R.I., 1979. Flow over an isolated hill of moderate slope. Quarterly Journal of the Royal Meteorological Society, 105: 383–395.Google Scholar
  115. Maxwell, T. and Haynes, C., 2001. Sand sheet dynamics and Quaternary landscape evolution of the Selima Sand Sheet, southern Egypt. Quaternary Science Reviews, 20: 1623–1647.Google Scholar
  116. Maxwell, T.A. and Haynes, C.V., Jr., 1989. Large-scale, low-amplitude bedfroms (chevrons) in the Selima sand sheet, Egypt. Science, 243: 1179–1182.Google Scholar
  117. McDonald, R.R. and Anderson, R.S., 1995. Experimental verification of aeolian saltation and lee side deposition models. Sedimentology, 42(1): 39–56.Google Scholar
  118. McKee, E., 1982. Sedimentary structures in dunes of the Namib Desert, South West Africa. Geological Society of America Special paper, 188: 60.Google Scholar
  119. McKee, E. and Tibbitts, G.C., Jr., 1964. Primary structures of a seif dune and associated deposits in Libya. Journal of Sedimentary Petrology, 34(1): 5–17.Google Scholar
  120. McKee, E.D., 1966. Structures of dunes at White Sands National Monument, New Mexico (and a comparison with structures of dunes from other selected areas). Sedimentology, 7(1): 1–69.Google Scholar
  121. McKenna Neuman, C., Lancaster, N. and Nickling, W.G., 1997. Relations between dune morphology, airflow, and sediment flux on reversing dunes, Silver Peak, Nevada. Sedimentology, 44: 1103-1114.Google Scholar
  122. McKenna Neuman, C., Lancaster, N. and Nickling, W.G., 2000. The effect of unsteady winds on sediment transport on the stoss slope of a transverse dune, Silver Peak, Nevada. Sedimentology, 47(1): 211–226.Google Scholar
  123. Momiji, H., Carretero-Gonzalez, R., Bishop, S.R. and Warren, A., 2000. Simulation of the effect of wind speedup in the formation of transverse dune fields. Earth Surface Processes and Landforms, 25: 905–918.Google Scholar
  124. Muhs, D.R., 2004. Mineralogical maturity in dunefields of North America, Africa, and Austrlia. Geomorphology, 59(1–2): 247–269.Google Scholar
  125. Muhs, D.R., Bush, C.A., Cowherd, S.D. and Mahan, S., 1995. Source of sand for the Algodones Dunes. In: V.P. Tchakerian (Ed.), Desert Aeolian Processes. Chapman and Hall, New York, pp. 37–74.Google Scholar
  126. Muhs, D.R., Reynolds, R.R., Been, J. and Skipp, G., 2003. Eolian sand transport pathways in the southwestern United States: importance of the Colorado River and local sources. Quaternary International, 104: 3–18.Google Scholar
  127. Mulligan, K.R., 1988. Velocity Profiles measured on the windward slope of a transverse dune. Earth Surface Processes and Landforms, 13(7): 573–582.Google Scholar
  128. Nickling, W.G. and McKenna Neuman, C., 1999. Recent investigations of airflow and sediment transport over desert dunes. In: A.S. Goudie, I. Livingstone and S. Stokes (Eds.), Aeolian Environments, Sediments and Landforms. Chichester, John Wiley & Sons.Google Scholar
  129. Nickling, W.G., McKenna Neuman, C. and Lancaster, N., 2002. Grainfall Processes in the Lee of Transverse Dunes, Silver Peak, Nevada. Sedimentology, 49(1): 191–211.Google Scholar
  130. Nielson, J. and Kocurek, G., 1986. Climbing zibars of the Algodones. Sedimentary Geology, 48: 1–15.Google Scholar
  131. Nielson, J. and Kocurek, G., 1987. Surface processes, deposits, and development of star dunes: Dumont dune field, California. Geological Society of America Bulletin, 99:177–186.Google Scholar
  132. Parsons, D.R., Walker, I.J. and Wiggs, G.F.S., 2004. Numerical modelling of flow structures over an idealised transverse dunes of varying geometry. Geomorphology, 59: 149–164.Google Scholar
  133. Partelli, E.J.R., Schwämmle, V., Herrman, H.J., Monteiro, L.H.U. and Maia, L.P., 2006. Profile measurement and simulation of a transverse dune field in the Lencois Maranhenses. Geomorphology, 81: 29–42.Google Scholar
  134. Pye, K. and Tsoar, H., 1990. Aeolian Sand and Sand Dunes. Unwin Hyman, London, 396pp.Google Scholar
  135. Ramsey, M.S., Christensen, P.R., Lancaster, N. and Howard, D.A., 1999. Identification of sand sources and transport pathways at the Kelso Dunes, California using thermal infrared remote sensing. Geological Society of America Bulletin, 111: 646–662.Google Scholar
  136. Rubin, D.M., 1984. Factors determining desert dune type (discussion). Nature, 309: 91–92.Google Scholar
  137. Rubin, D.M. and Hunter, R.E., 1982. Bedform climbing in theory and nature. Sedimentology, 29: 121–138.Google Scholar
  138. Rubin, D.M. and Hunter, R.E., 1987. Bedform alignment in directionally varying flows. Science, 237: 276–278.Google Scholar
  139. Rubin, D.M. and Ikeda, H., 1990. Flume experiments on the alignment of transverse, oblique and longitudinal dunes in directionally varying flows. Sedimentology, 37(4): 673–684.Google Scholar
  140. Sauerman, G., Rognon, P., Poliakov, A. and Herrmann, H.J., 2000. The shape of the barchan dunes of Southern Morocco. Geomorphology, 36(1–2): 47–62.Google Scholar
  141. Schwämmle, V. and Herrmann, H., 2004. Modelling transverse dunes. Earth Surface Processes and Landforms, 29(6): 769–784.Google Scholar
  142. Seppälä, M. and Linde, K., 1978. Wind tunnel studies of ripple formation. Geografiska Annaler, 60(Series A): 29–42.Google Scholar
  143. Sharp, R.P., 1963. Wind Ripples. Journal of Geology, 71: 617–636.Google Scholar
  144. Sharp, R.P., 1966. Kelso Dunes, Mohave Desert, California. Geological Society of America Bulletin, 77: 1045–1074.Google Scholar
  145. Singhvi, A.K. and Kar, A., 2004. The aeolian sedimentation record of the Thar Desert. Proceedings of the Indian Academy of Sciences (Earth Sciences), 113(3): 371–401.Google Scholar
  146. Slattery, M.C., 1990. Barchan migration on the Kuiseb River Delta, Namibia. South African Geographical Journal, 72: 5–10.Google Scholar
  147. Stokes, S. and Bray, H.E., 2005. Late Pleistocene eolian history of the Liwa region, Arabian Peninsula. Geological Society of America Bulletin, 117(11/12): 1466–1480.Google Scholar
  148. Stokes, S., Goudie, A.S., Ballard, J., Gifford, C., Samieh, S., Embabi, N. and El-Rashidi, O.A., 1999. Accurate dune displacement and morphometric data using kinematic GPS. Zeistchrift für Geomorphologie Supplementbände, 11: 195–214.Google Scholar
  149. Stokes, S., Maxwell, T.A., Haynes, C.V. and Horrocks, J., 1998. Latest Pleistocene and Holocene sand sheet construction in the Selima Sand Sheet, Eastern Sahara. In: A.S. Alsharan, K.W. Glennie, G.L. Whittle and C.G.S.C. Kendall (Eds.), Quaternary Deserts and Climatic Change. Balkema, Rotterdam/Brookfield, pp. 175–184.Google Scholar
  150. Stokes, S., Thomas, D.S.G. and Shaw, P.A., 1997. New chronological evidence for the nature and timing of linear dune development in the southwest Kalahari Desert. Geomorphology, 20(1–2): 81–94.Google Scholar
  151. Sweet, M.L. and Kocurek, G., 1990. An empirical model of aeolian dune lee-face airflow. Sedimentology, 37(6): 1023–1038.Google Scholar
  152. Sweet, M.L., Nielson, J., Havholm, K. and Farralley, J., 1988. Algodones dune field of southeastern California: case history of a migrating modern dune field. Sedimentology, 35(6): 939–952.Google Scholar
  153. Teller, J.T., Glennie, K.W., Lancaster, N. and Singhvi, A.K., 2002. Calcareous dunes of the United Arab emirates and Noah’s Flood: the postglacial reflooding of the Persion (Arabian) Gulf. Quaternary International, 68–71: 297–308.Google Scholar
  154. Thomas, D.S.G. and Leason, H.C., 2005. Dunefield activity response to climate variability in the southwest Kalahari. Geomorphology, 64(1–2): 117–132.Google Scholar
  155. Thomas, D.S.G. and Tsoar, H., 1990. The geomorphological role of vegetation in desert dune systems. In: J.B. Thornes (Editor), Vegetation and Erosion. John Wiley & Sons Ltd., Chichester, pp. 471-489.Google Scholar
  156. Tseo, G., 1990. Reconnaissance of the dynamic characteristics of an active Strzelecki Desert longitudinal dune, southcentral Australia. Zeitschrift für Geomorphologie N.F., 34(1): 19–35.Google Scholar
  157. Tsoar, H., 1974. Desert dunes morphology and dynamics, El Arish (northern Sinai). Zeitschrift für Geomorphologie Supplementband, 20: 41–61.Google Scholar
  158. Tsoar, H., 1983. Dynamic processes acting on a longitudinal (seif) dune. Sedimentology, 30: 567–578.Google Scholar
  159. Tsoar, H., 1984. The formation of seif dunes from barchans – a discussion. Zeitschrift fur Geomorphologie, 28(1): 99–103.Google Scholar
  160. Tsoar, H., 1985. Profile analysis of sand dunes and their steady state significance. Geografiska Annaler, 67A: 47–59.Google Scholar
  161. Tsoar, H., 1986. Two-dimensional analysis of dune profile and the effect of grain size on sand dune morphology. In: F. El-Baz and M.H.A. Hassan (Eds.), Physics of Desertification. Martinus Nyhoff, Dordrecht, pp. 94–108.Google Scholar
  162. Tsoar, H., 1989. Linear dunes – forms and formation. Progress in Physical Geography, 13(4): 507–528.Google Scholar
  163. Tsoar, H. and Møller, J.T., 1986. The role of vegetation in the formation of linear sand dunes. In: W.G. Nickling (Ed.), Aeolian Geomorphology. Allen and Unwin, Boston, London, Sydney, pp. 75–95.Google Scholar
  164. Verstappen, H.T., 1968. On the origin of longitudinal (seif) dunes. Zeitschrift für Geomorphologie N.F., 12: 200–220.Google Scholar
  165. Walker, D.J., 1981. An experimental study of wind ripples. MSc Thesis, Massachusetts Institute of Technology.Google Scholar
  166. Walker, I.J., 1999. Secondary airflow and sediment trasport in the lee of a reversing dune. Earth Surface Processes and Landforms, 24: 437–448.Google Scholar
  167. Walker, I.J. and Nickling, W.G., 2002. Dynamics of secondary airflow and sediment transport over and the lee of transverse dunes. Progress in Physical Geography, 26(1): 47–75.Google Scholar
  168. Wang, X., Dong, Z., Zhang, J. and Qu, J., 2004. Formation of the complex linear dunes of the central Taklimakan sand sea. Earth Surface Processes and Landforms, 29(6): 677–686.Google Scholar
  169. Warren, A., 1972. Observations on dunes and bimodal sands in the Tenere desert. Sedimentology, 19: 37–44.Google Scholar
  170. Warren, A., 1988. The dunes of the Wahiba Sands. In: R.W. Dutton (Ed.), Scientific Results of the Royal Geographical Society’s Oman Wahiba Sands Project 1985–1987. Journal of Oman Studies, Special Report 3, Muscat, Oman, pp. 131–160.Google Scholar
  171. Warren, A. and Allison, D., 1998. The palaeoenvironmental significance of dune size hierarchies. Palaeogeography, Palaeoeclimatology, Palaeocology, 137: 289–303.Google Scholar
  172. Wasson, R.J., 1983. Dune sediment types, sand colour, sediment provenance and hydrology in the Strzelecki-Simpson Dunefield, Australia. In: M.E. Brookfield and T.S. Ahlbrandt (Eds.), Eolian Sediments and Processes. Developments in Sedimentology. Elsevier, Amsterdam, Oxford, New York, Tokyo, pp. 165–195.Google Scholar
  173. Wasson, R.J., Fitchett, K., Mackey, B. and Hyde, R., 1988. Large-scale patterns of dune type, spacing, and orientation in the Australian continental dunefield. Australian Geographer, 19: 89–104.Google Scholar
  174. Wasson, R.J. and Hyde, R., 1983a. A test of granulometric control of desert dune geometry. Earth Surface Processes and Landforms, 8: 301–312.Google Scholar
  175. Wasson, R.J. and Hyde, R., 1983b. Factors determining desert dune type. Nature, 304: 337–339.Google Scholar
  176. Wasson, R.J, Rajaguru, S.N. Misra, V.N. Agrawal, D.P. Dhir, R.P., Singhvi, A.K., Kameswara Rao, K.., 1983. Geomorphology, late Quaternary stratigraphy and paleoclimatology of the Thar dunefield. Zeitschrift für Geomorphologie, Supplementband, 45: 117-151.Google Scholar
  177. Weng, W.S., Hunt, J.C.R., Carruthers, D.J., Warren, A., Wiggs, G.F.S., Livingstone, A. and Castro, I., 1991. Air flow and sand transport over sand dunes. Acta Mechanica Supplement, 2: 1–22.Google Scholar
  178. Werner, B.T., 1988. A steady-state model of wind-blown sand transport. Journal of Geology, 98(1): 1–17.Google Scholar
  179. Werner, B.T., 1995. Eolian dunes: computer simulations and attractor interpretation. Geology, 23(12): 1107–1110.Google Scholar
  180. Werner, B.T., 2003. Modeling Landforms as Self-Organized, Hierarchical Dynamical Systems. Predictions in Geomorphology, Geophysical Monograph, (135): 133–150.Google Scholar
  181. Werner, B.T. and Kocurek, G., 1997. Bed-form dynamics: Does the tail wag the dog? Geology, 25(9): 771–774.Google Scholar
  182. Werner, B.T. and Kocurek, G., 1999. Bedform spacing from defect dynamics. Geology, 27(8): 727–730.Google Scholar
  183. Wiggs, G.F.S., 1993. Desert dune dynamics and the evaluation of shear velocity: an integrated approach. In: K. Pye (Ed.), The Dynamics and Environmental Context of Aeolian Sedimentary Systems. Geological Society, London, pp. 37–48.Google Scholar
  184. Wiggs, G.F.S., 2001. Desert dune processes and dynamics. Progress in Physical Geography, 25(1): 53–79.Google Scholar
  185. Wiggs, G.F.S., Livingstone, I., Thomas, D.S.G. and Bullard, J.E., 1994. Effect of vegetation removal on airflow patterns and dune dynamics in the southwestern Kalahari Desert. Land Degradation and Rehabilitation, 5: 13–24.Google Scholar
  186. Wiggs, G.F.S., Livingstone, I. and Warren, A., 1996. The role of streamline curvature in sand dune dynamics:evidence from field and wind tunnel measurements. Geomorphology, 17(1–3): 29–46.Google Scholar
  187. Wiggs, G.F.S., Thomas, D.S.G., Bullard, J.E. and Livingstone, I., 1995. Dune mobility and vegetation cover in the southwest Kalahari Desert. Earth Surface Processes and Landforms, 20(6): 515–530.Google Scholar
  188. Wilson, I.G., 1971. Desert sandflow basins and a model for the development of ergs. Geographical Journal, 137(2): 180–199.Google Scholar
  189. Wilson, I.G., 1972. Aeolian bedforms – their development and origins. Sedimentology, 19: 173–210.Google Scholar
  190. Wilson, I.G., 1973. Ergs. Sedimentary Geology, 10: 77–106.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Nicholas Lancaster
    • 1
  1. 1.Desert Research InstituteRenoUSA

Personalised recommendations