Integrated Water Management

  • Ramiro Neves
  • José S. Matos
  • Luís Fernandes
  • Filipa S. Ferreira
Conference paper


In this paper, an overview on the development and application of state of the art integrated water modelling tools to study water pollution, either from urban or agricultural origin, from source to final destination, and also of the research carried out at IST in the framework of integrated water management is described. The modelling tools are used for computing the urban load in a sub-catchment of Lisbon metropolitan area for assessing the trophic levels of Tagus estuary and its relation with urban and agricultural loads.

The strategy for modelling development at IST is also described, showing that modelling can be an important contribution for the integration of water management. Results have shown that modelling of the functioning of wastewater treatment plants is a mechanism for managing the urban wastewater loads and that the trophic level in the Tagus estuary is controlled by light penetration and not by nutrients. As a consequence, a reduction of the nutrient loads from urban origin or a 50% of the agricultural nutrient load would have no benefits in terms of trophic activity.

Key words

Integrated Management Modelling Receiving Waters Wastewater 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harremöes, P., Integrated urban drainage, status and perspectives. Water Science & Technology, Vol 45, No 3, pp 1–10. IWA Publishing, 2002.Google Scholar
  2. 2.
    Di Pierro F., DjordjeviĆ S., Kapelan Z., Khu S.T., Savić D. and Walters G.A., Automatic calibration of urban drainage model using a novel multi-objective genetic algorithm. Water Science and Technology, 52(5), 43–52, 2005.Google Scholar
  3. 3.
    Seggelke K., Rosenwinkel K.-H., Vanrolleghem P.A. and Krebs P., Integrated operation of sewer system and WWTP by simulation-based control of the WWTP inflow. Water Science and Technology, 52(5), 195–203, 2005.Google Scholar
  4. 4.
    Rauch W., Bertrand-Krajewski J.-L., Krebs P., Mark O., Schilling W., Schütze M. and Vanrolleghem P.A., Deterministic modelling of integrated urban drainage systems. Water Science and Technology, 45(3), 81–94, 2002.Google Scholar
  5. 5.
    Erbe V., Frehmann T., Geiger W.F., Krebs P., Londong J., Rosenwinkel K.-H. and Seggelke K., Integrated modelling as an analytical and optimisation tool for urban watershed management. Water Science and Technology, 46(6–7), 141–150, 2002.Google Scholar
  6. 6.
    Schütze M., Butler D. and Beck M.B., Modelling, Simulation and Control of Urban Wastewater Systems. Springer Verlag; ISBN 1-85233-553-X, 2002.Google Scholar
  7. 7.
    Harremöes, P. and Rauch, W., Optimal design and real time control of the integrated urban runoff system. Hydrobiologia, No 410, pp 177–184, 1999.CrossRefGoogle Scholar
  8. 8.
    Henze, M.; Grady, C.P.L.; Gujer, W.; Marais, G.V.R. and Matsuo, T., Activated sludge model N o 1. IAWQ Scientific and Technical Report No 1, London, ISSN: 1010-707X, 1987.Google Scholar
  9. 9.
    Henze, M.; Gujer, W.; Mino, T. and van Loosdrecht, M., Activated sludge Models ASM1, ASM2, ASM2d and ASM3. IWA Scientific and Technical Report No 9, London, UK, 2000.Google Scholar
  10. 10.
    Takács, I.; Patry, G.G.; Nolasco, D., A dynamic model of the clarification-thickening process. Wat. Res. 25(10), 1263–1271, 1991.CrossRefGoogle Scholar
  11. 11.
    Beck, M.B., Dynamic Modelling and Control Applications in Water Quality Maintenance. Wat. Res. 10, pp 575–595, 1976.CrossRefGoogle Scholar
  12. 12.
    Gujer, W.; Krejei, V.; Schwarzenbach, R. and Zobrist, J., Von der Kanalisation ins Grundwasser — Charakterisierung eines Regeneignisses im Glattal. GWA, 63(7), pp 298–311, 1982.Google Scholar
  13. 13.
    Schütze, M.; Butler, D. and Beck, B., Development of a framework for the optimization of runoff, treatment and receiving waters. 7th Int. Conf. Urban Storm Drainage. Hannover, 9–13, pp 1419–1425, 1996.Google Scholar
  14. 14.
    Vanrolleghem, P.A.; Fronteau, C and Bauwens, W., Evaluation of design and operation of the sewage transport and treatment system by an EQO/EQS based analysis of the receiving water immission characteristics. Proc. Pp 14.35–14.46, WEF Conference Urban Wet Weather Pollution, Québec, Canada, 1996.Google Scholar
  15. 15.
    Erbe V. and Schütze M., An integrated modelling concept for immission-based management of sewer system, wastewater treatment plant and river t. Water Science and Technology, 52(5), 95–103, 2005.Google Scholar
  16. 16.
    Ferreira, F.; Matos, J.; Teles, S., An Integrated approach for preliminary assessment of the environmental performance of urban wastewater systems. Water, Science & Technology, submitted, 2006.Google Scholar
  17. 17.
    Leendertse, J. J. Aspects of a computational model for long-period water-wave propagation. Rand Corporation, Santa Monica, California, RM-5294-PR. 165 pp., 1967Google Scholar
  18. 18.
    Heaps NS. A two-dimensional numerical sea model. Philosophy Transactions Royal D.B., 1969Google Scholar
  19. 19.
    Spalding. A novel finite difference formulation for differential expressions involving both first and second derivatives. Int. J. Numer. Methods in Engineering, 4:551–559, 1972.CrossRefGoogle Scholar
  20. 20.
    Leonard, B. P. A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Meth. Appl. Mech. Eng., 19, 59–98, 1979zbMATHCrossRefGoogle Scholar
  21. 21.
    Rodi, W., The Prediction of Free Turbulent Boundary Layers by Use of a Two-equation Model of Turbulence, PhD Thesis, Imperial College, University of London, UK, 1972Google Scholar
  22. 22.
    Blumberg, A. F. and G. L. Mellor. A description of a three-dimensional coastal ocean circulation model. Three-Dimensional Coastal Ocean Models, ed. N. Heaps. Vol. 4, 208 pp. American Geophysical Union, 1987Google Scholar
  23. 23.
    Pacanowski, R. C., K. W. Dixon and A. Rosati: GFDL Modular Ocean Model, Users uide Version 1.0, GFDL Tech. Rep., 2, 46 pp., 1991Google Scholar
  24. 24.
    Nihoul, J.C.J., Deleersnijder, E., and Djenidi, S. Modelling the general circulation of shelf seas by 3D k-epsilon models. Earth Science Reviews, 26 pages 163–189, 1989CrossRefGoogle Scholar
  25. 25.
    Burchard, H., K. Bolding, and M. R. Villarreal, GOTM-a general ocean turbulence model. Theory, applications and test cases, Tech. Rep. EUR 18745 EN, European Commission, 1999Google Scholar
  26. 26.
    Di Toro, D.M., Fitzpatrick, J.J., and Thomann, R.V. 1983. Water Quality AnalysisSimulation Program (WASP) and Model Verification Program (MVP) Documentation. Hydroscience, Inc. Westwood, NY. USEPA Contract No. 68-01-3872.Google Scholar
  27. 27.
    Ruardij, P., and J. W. Baretta. The EmsDollart Ecosystem Modelling Workshop. BOEDE Publ. en Versl. No. 2, Texel, 1982Google Scholar
  28. 28.
    Neves, R. J. J.-Étude Experimentale et Modélisation des Circulations Trasitoire et Résiduelle dans l’Estuaire du Sado, Ph. D. Thesis, Univ. Liège, 371 pp., 1985 (in French)Google Scholar
  29. 29.
    Silva, A.J.R., Modelação Matemática Não Linear de Ondas de Superfície e de Correntes Litorais, Tese apresentada para obtenção do grau de Doutor em Engenharia Mecânica. IST, Lisboa, 1991 (in Portuguese)Google Scholar
  30. 30.
    Portela, L.I., Mathematical modelling of hydrodynamic processes and water quality in Tagus estuary, Ph.D. thesis, Instituto Sup. Técnico, Tech. Univ. of Lisbon, 1996. (in Portuguese)Google Scholar
  31. 31.
    Santos, A.J.P. Modelo hidrodinâmico tridimensional de circulação oceânica e estuarina. Tese de doutoramento. Instituto Superior Técnico, Universidade Técnica de Lisboa, 273 pp., Lisboa, 1995 (in Portuguese)Google Scholar
  32. 32.
    Martins, F. Modelação Matemática Tridimensional de escoamentos costeiros e estuarinos usando uma abordagem de coordenada vertical genérica. Universidade Técnica de Lisboa, Instituto Superior Técnico. Tese de Doutoramento, 2000 (in Portuguese)Google Scholar
  33. 33.
    Leitão, “Integração de Escalas e de Processos na Modelação ao Ambiente Marinho, Universidade Técnica de Lisboa, Instituto Superior Técnico. Tese de Doutoramento, 2003 (in Portuguese)Google Scholar
  34. 34.
    Braunschweig, F., P. Chambel, L. Fernandes, P. Pina, R. Neves, The object-oriented design of the integrated modelling system MOHID, Computational Methods in Water Resources International Conference, Chapel Hill, North Carolina, USA, 2004Google Scholar
  35. 35.
    Trancoso, A., Saraiva, S., Fernandes, L., Pina, P., Leitão, P. and Neves, R., Modelling Macroalgae using a 3D hydrodynamic ecological model in a shallow, temperate estuary, Ecological Modelling, 2005Google Scholar
  36. 36.
    Saraiva, S., Pina, P., Martins, F., Santos, M., Braunschweig, F., Neves, R., EU-Water Framework: dealing with nutrients loads in Portuguese estuaries, Hydrobiologia, 2006 (accepted for publication)Google Scholar
  37. 37.
    Mateus, M., A Process-Oriented Biogeochemical Model for Marine Ecosystems Development. Numerical Study and Application. Universidade Técnica de Lisboa, Instituto Superior Técnico. Tese de Doutoramento (submitted), 2006Google Scholar
  38. 38.
    Galvao, P., Chambel-Leitao, P., Neves R. and Leitao P., A different approach to the modified Picard method for water flow in variably saturated media, Computational Methods in Water Resources, Part 1, Developments in Water Science, Volume 55, Elsevier, 2004Google Scholar
  39. 39.
    Braunschweig, F., Neves, R., 2006 Catchment modelling using the finite volume approach, Relatório final do projecto, Instituto Superior Técnico, 2006Google Scholar
  40. 40.
    Leitão, P. Coelho, H. Santos, A. Neves, R. et al, Modelling the main features of the Algarve coastal circulation during July 2004: a downscalling approach. Submitted to Journal of Atmospheric and Ocean Science, 2006 (submitted)Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Ramiro Neves
    • 1
  • José S. Matos
    • 2
  • Luís Fernandes
    • 1
  • Filipa S. Ferreira
    • 2
  1. 1.Secção de Ambiente e Energia, Dept. Enga Mecânica do IST, Instituto Superior TécnicoUniversidade Técnica de LisboaLisboaPortugal
  2. 2.Secção de Hidráulica e Recursos Hídricos e Ambientais, Dept. Enga Civil e Arquitectura, Instituto Superior TécnicoUniversidade Técnica de LisboaLisboaPortugal

Personalised recommendations