• Alexander Shnirman
  • Gerd Schön
  • Ivar Martin
  • Yuriy Makhlin
Part of the NATO Science Series book series (NAII, volume 241)


Quantum state engineering in solid-state systems is one of the most rapidly developing areas of research. Solid-state building blocks of quantum computers have the advantages that they can be switched quickly, and they can be integrated into electronic control and measuring circuits. Substantial progress has been achieved with superconducting circuits (qubits) based on Josephson junctions. Strong coupling to the external circuits and other parts of the environment brings, together with the advantages, the problem of noise and, thus, decoherence. Therefore, the study of sources of decoherence is necessary. Josephson qubits themselves are very useful in this study: they have found their first application as sensitive spectrometers of the surrounding noise.


Josephson Junction Tunnel Junction Noise Power Spectrum Pure Dephasing Phase Qubits 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguado, R. and Kouwenhoven, L. P. (2000) Double Quantum Dots as Detectors of High-Frequency Quantum Noise in Mesoscopic Conductors, Phys. Rev. Lett. 84, 1986.CrossRefADSGoogle Scholar
  2. Anderson, P. W., Halperin, B. I., and Varma, C. M. (1972) Anomalous Low-Temperature Thermal Properties of Glasses and Spin Glasses, Phylos. Mag. 25, 1.zbMATHADSCrossRefGoogle Scholar
  3. Astafiev, O. (2004), private communication.Google Scholar
  4. Astafiev, O., Pashkin Yu. A., Nakamura, Y., Yamamoto, T., and Tsai, J. S. (2004a) Quantum Noise in the Josephson Charge Qubit, Phys. Rev. Lett. 93, 267007.CrossRefADSGoogle Scholar
  5. Astafiev, O., Pashkin, Y. A., Yamamoto, T., Nakamura, Y., and Tsai, J. S. (2004b) Single-Shot Measurement of the Josephson Charge Qubit., Phys. Rev. B 69, 180507.CrossRefADSGoogle Scholar
  6. Bernamont, J. (1937) Fluctuations de potentiel aux bornes d’un conducteur metallique de faible volume parcouru par un courant., Ann. Phys. (Leipzig) 7, 71.Google Scholar
  7. Black, J. L. (1981) Low-Energy Excitations in Metallic Glasses, In H.-J. Güntherodt and H. Beck (eds.), Glassy metals, Berlin, Springer-Verlag.Google Scholar
  8. Black, J. L. and Halperin, B. I. (1977) Spectral Diffusion, Phonon Echoes, and Saturation Recovery in Glasses at Low-Temperatures, Phys. Rev. B 16, 2879.CrossRefADSGoogle Scholar
  9. Bloch, F. (1957) Generalized Theory of Relaxation, Phys. Rev. 105, 1206.zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. Collin, E., Ithier, G., Aassime, A., Joyez, P., Vion, D., and Esteve, D. (2004) NMR-like Control of a Quantum Bit Superconducting Circuit., Phys. Rev. Lett. 93, 157005.CrossRefADSGoogle Scholar
  11. Cottet, A. (2002), PhD thesis, Université Paris VI.Google Scholar
  12. de Sousa, R., Whaley, K. B., Wilhelm, F. K., and von Delft, J. (2005) Ohmic Noise from a Single Defect Center Hybridized with a Fermi Sea., Phys. Rev. Lett. 95, 247006.CrossRefADSGoogle Scholar
  13. Dutta, P. and Horn, P. M. (1981a) Low-Frequency Fluctuations in Solids, Rev. Mod. Phys. 53, 497.CrossRefADSGoogle Scholar
  14. Dutta, P. and Horn, P. M. (1981b) Low-Frequency Fluctuations in Solids: 1/ f Noise, Rev. Mod. Phys. 53, 497.CrossRefADSGoogle Scholar
  15. Esteve, D. and Vion, D. (2005) Solid State Quantum Bits, cond-mat/0505676.Google Scholar
  16. Falci, G., D’Arrigo, A., Mastellone, A., and Paladino, E. (2005) Initial Decoherence in Solid State Qubits, Phys. Rev. Lett. 94, 167002.CrossRefADSGoogle Scholar
  17. Faoro, L., Bergli, J., Altshuler, B. A., and Galperin, Y. M. (2005) Models of Environment and T1 Relaxation in Josephson Charge Qubits, Phys. Rev. Lett. 95, 046805.CrossRefADSGoogle Scholar
  18. Faoro, L. and Ioffe, L. B. (2005) Quantum Two Level Systems and Kondo-like Traps as Possible Sources of Decoherence in Superconducting Qubits., cond-mat/0510554.Google Scholar
  19. Feng, S., Lee, P. A., and Stone, A. D. (1986) Sensitivity of the Conductance of a Disordered Metal to the Motion of a Single Atom: Implications for 1/f Noise, Phys. Rev. Lett. 56, 1960.CrossRefADSGoogle Scholar
  20. Galperin, Y. M., Altshuler, B. L., and Shantsev, D. V. (2004a) Low-Frequency Noise as a Source of Dephasing of a Qubit, In I. V. Lerner, B. L. Altshuler, and Y. Gefen (eds.), Fundamental Problems of Mesoscopic Physics, Dordrecht, Boston, London, Kluwer Academic Publishers, cond-mat/0312490.Google Scholar
  21. Galperin, Y. M., Kozub, V. I., and Vinokur, V. M. (2004b) Low-Frequency Noise in Tunneling through a Single Spin, Phys. Rev. B 70, 033405.CrossRefADSGoogle Scholar
  22. Grishin, A., Yurkevich, I. V., and Lerner, I. V. (2005) Low-Temperature Decoherence of Qubit Coupled to Background Charges, Phys. Rev. B 72, 060509.CrossRefADSGoogle Scholar
  23. Imry, Y., Fukuyama, H., and Schwab, P. (1999) Low-Temperature Dephasing in Disordered Conductors: The Effect of “1/ f ” Fluctuations, Europhys. Lett. 47, 608.CrossRefADSzbMATHGoogle Scholar
  24. Ithier, G., Collin, E., Joyez, P., Meeson, P. J., Vion, D., Esteve, D., Chiarello, F., Shnirman, A., Makhlin, Y., Schrie., J., and Schön, G. (2005) Decoherence in a Superconducting Quantum Bit Circuit., Phys. Rev. B 72, 134519.CrossRefADSGoogle Scholar
  25. Kenyon, M., Lobb, C. J., and Wellstood, F. C. (2000) Temperature Dependence of Low-Frequency Noise in Al-Al2O3-Al Single-Electron Transistors, J. Appl. Phys. 88, 6536.CrossRefADSGoogle Scholar
  26. Kogan, S. M. and Nagaev, K. E. (1984) On the Low-Frequency Current Noise in Metals, Solid State Comm. 49, 387.CrossRefADSGoogle Scholar
  27. Korotkov, A. N. and Averin, D. V. (2001) Continuous Weak Measurement of Quantum Coherent Oscillations, Phys. Rev. B 64, 165310.CrossRefADSGoogle Scholar
  28. Ludviksson, A., Kree, R., and Schmid, A. (1984) Low-Frequency 1/f Fluctuations of Resistivity in Disordered Metals, Phys. Rev. Lett. 52, 950.CrossRefADSGoogle Scholar
  29. Makhlin, Y. and Shnirman, A. (2004) Dephasing of Solid-State Qubits at Optimal Points, Phys. Rev. Lett. 92, 107001.CrossRefADSGoogle Scholar
  30. Martin, I., Bulaevskii, L., and Shnirman, A. (2005) Tunneling Spectroscopy of Two-level Systems Inside a Josephson Junction., Phys. Rev. Lett. 95, 127002.CrossRefADSGoogle Scholar
  31. Martinis, J. M., Cooper, K. B., McDermott, R., Steffen, M., Ansmann, M., Osborn, K., Cicak, K., Oh, S., Pappas, D. P., Simmonds, R., and Yu, C. C. (2005) Decoherence in Josephson Qubits from Dielectric Loss., Phys. Rev. Lett. 95, 210503.CrossRefADSGoogle Scholar
  32. Nakamura, Y., Pashkin Yu. A., Yamamoto, T., and Tsai, J. S. (2002) Charge Echo in a Cooper-Pair Box, Phys. Rev. Lett. 88, 047901.CrossRefADSGoogle Scholar
  33. Paladino, E., Faoro, L., Falci, G., and Fazio, R. (2002) Decoherence and 1/f noise in Josephson Qubits, Phys. Rev. Lett. 88, 228304.CrossRefADSGoogle Scholar
  34. Phillips, W. A. (1972) Tunneling States in Amorphous Solids, J. Low. Temp. Phys. 7, 351.CrossRefADSGoogle Scholar
  35. Rabenstein, K., Sverdlov, V. A., and Averin, D. V. (2004) Qubit Decoherence by Gaussian Low-Frequency Noise, JETP Lett. 79, 783.CrossRefGoogle Scholar
  36. Redfield, A. G. (1957) On the theory of relaxation processes, IBM J. Res. Dev. 1, 19.CrossRefGoogle Scholar
  37. Schoelkopf, R. J., Clerk, A. A., Girvin, S. M., Lehnert, K. W., and Devoret, M. H. (2003) Qubits as Spectrometers of Quantum Noise, In Y. V. Nazarov (ed.), Quantum Noise in Mesoscopic Physics, Dordrecht, Boston, pp. 175–203., Kluwer Academic Publishers, cond-mat/0210247.Google Scholar
  38. Schrie., J. (2005), PhD Thesis, University of Karlsruhe.Google Scholar
  39. Shnirman, A., Makhlin, Yu., and Schön, G. (2002) Noise and Decoherence in Quantum Two-Level Systems, Physica Scripta T102, 147.CrossRefADSGoogle Scholar
  40. Shnirman, A., Mozyrsky, D., and Martin, I. (2004) Output Spectrum of a Measuring Device at Arbitrary Voltage and temperature, Europhys. Lett. 67, 840.CrossRefADSGoogle Scholar
  41. Shnirman, A., Schön, G., Martin, I., and Makhlin, Y. (2005) Low-and High-Frequency Noise from Coherent Two-Level Systems, Phys. Rev. Lett. 94, 127002.CrossRefADSGoogle Scholar
  42. Siddiqi, I., Vijay, R., Pierre, F., Wilson, C. M., Metcalfe, M., Rigetti, C., Frunzio, L., and Devoret, M. H. (2004) RF-Driven Josephson Bifurcation Amplifier for Quantum Measurement, Phys. Rev. Lett. 93, 207002.CrossRefADSGoogle Scholar
  43. Simmonds, R.W., Lang, K. M., Hite, D. A., Nam, S., Pappas, D. P., and Martinis, J. M. (2004) Decoherence in Josephson Phase Qubits from Junction Resonators, Phys. Rev. Lett. 93, 077003.CrossRefADSGoogle Scholar
  44. Van Harlingen, D. J., Robertson, T. L., Plourde, B. L. T., Reichardt, P. A., Crane, T. A., and Clarke, J. (2004) Decoherence in Josephson-junction qubits due to critical current fluctuations, Phys. Rev. B 70, 064517.CrossRefADSGoogle Scholar
  45. Vion, D., Aassime, A., Cottet, A., Joyez, P., Pothier, H., Urbina, C., Esteve, D., and Devoret, M. H. (2002) Manipulating the quantum state of an electrical circuit, Science 296, 886.CrossRefADSGoogle Scholar
  46. Wallra., A., Schuster, D. I., Blais, A., Frunzio1, L., Huang, R.-S., Majer, J., Kumar, S., Girvin, S. M., and Schoelkopf, R. J. (2004) Strong Coupling of a Single Photon to a Superconducting Qubit using Circuit Quantum Electrodynamics, Nature 431, 162.CrossRefADSGoogle Scholar
  47. Wellstood, F. C. (1988), PhD thesis, University of California, Berkeley.Google Scholar
  48. Wellstood, F. C., Urbina, C., and Clarke, J. (2004) Flicker (1/f) Noise in the Critical Current of Josephson Junctions at 0.09-4.2 K, Appl. Phys. Lett. 85, 5296.CrossRefADSGoogle Scholar
  49. Wendin, G. and Shumeiko, V. S. (2005) Superconducting Quantum Circuits, Qubits and Computing, cond-mat/0508729.Google Scholar
  50. Yamamoto, T., Pashkin, Y. A., Astafiev, O., Nakamura, Y., and Tsai, J. S. (2003) Demonstration of Conditional Gate Operation using Superconducting Charge Qubits., Nature 425, 941.CrossRefADSGoogle Scholar
  51. Zimmerli, G., Eiles, T. M., Kautz, R. L., and Martinis, J. M. (1992) Noise in the Coulomb Blockade Electrometer, Appl. Phys. Lett. 61, 237.CrossRefADSGoogle Scholar
  52. Zorin, A. B., Ahlers, F.-J., Niemeyer, J., Weimann, T., Wolf, H., Krupenin, V. A., and Lotkhov, S. V. (1996) Background Charge Noise in Metallic Single-Electron Tunneling Devices, Phys. Rev. B 53, 13682.CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Alexander Shnirman
    • 1
  • Gerd Schön
    • 1
  • Ivar Martin
    • 2
  • Yuriy Makhlin
    • 3
  1. 1.1Institut für Theoretische FestkörperphysikUniversität KarlsruheKarlsruheGermany
  2. 2.2Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA
  3. 3.Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations