II.1 Magnesium diboride and the two-band scenario

NANOSIZE TWO-GAP SUPERCONDUCTIVITY
  • Hidemi Nagao
  • Hiroyuki Kawabe
  • Sergei P. Kruchinin
Part of the NATO Science Series book series (NAII, volume 241)

Abstract

We investigate properties of nanosize two-gap superconductivity by using a twosublevel model in the framework of a mean field approximation. A model corresponding to a nanosize two-gap superconductivity is presented, and the partition function of the nanosize system is analytically derived by using a path integral approach. A definition of the critical level spacing of the two-gap superconductivity is also presented, and we discuss condensation energy and parity gap of the two-gap superconductivity in relation to the size dependence of those properties with two bulk gaps and effective pair scattering process between two sublevels.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, J. M. and Picket, W. E. (2001) Phys. Rev. Lett. 86, 4366.CrossRefADSGoogle Scholar
  2. Anderson, P. W. (1959) J. Phys. Chem. Solids 11, 28.CrossRefADSGoogle Scholar
  3. Black, C. T., Ralph, D. C. and Tinkham, M. (1996) Phys. Rev. Lett. 76, 688.CrossRefADSGoogle Scholar
  4. Braun, F. and von Delft, J. (1998) Phys. Rev. Lett. 81, 4712.CrossRefADSGoogle Scholar
  5. Braun, F. and von Delft, J. (1999) Adv. Sol. State Phys., 39, 341.CrossRefGoogle Scholar
  6. Combescot, R. and Leyronas, X. (1995) Phys. Rev. Lett. 75, 3732.CrossRefADSGoogle Scholar
  7. Gladilin, V. N., Fomin, V. M. and Devreese, J. T. (2002) Solid Sate Comm. 121, 519.CrossRefADSGoogle Scholar
  8. Jankó, B., Smith, A. and Ambegaokar, V. (1994) Phys. Rev. B 50, 1152.CrossRefADSGoogle Scholar
  9. Kato, N., Nagao, H., Nishikawa, K., Nishidate, K., Endo, K. (2004) Int. J. Quantum Chem. 96, 457.CrossRefGoogle Scholar
  10. Kawabe, H., Nagao, H. and Kruchinin, S. P., to appear.Google Scholar
  11. Kondo, J. (1963) Prog. Theor. Phys. 29, 1.CrossRefADSGoogle Scholar
  12. Kondo, J. (2001) J. Phys. Soc. Jpn. 70, 808.CrossRefADSGoogle Scholar
  13. Kondo, J. (2002) J. Phys. Soc. Jpn. 71, 1353.CrossRefADSGoogle Scholar
  14. Konsin, P., Kristoffel, N. and Örd, T. (1988) Phys. Lett. A 129, 339.CrossRefADSGoogle Scholar
  15. Konsin, P. and Sorkin, B. (1998) Phys, Rev. B 58, 5795.CrossRefADSGoogle Scholar
  16. Kortus, J., Mazin, I.I., Belashenko, K. D., Antropov, V. P. and Boyer, I. L. (2001) Phys. Rev. Lett. 86, 4656.CrossRefADSGoogle Scholar
  17. Kruchinin, S. P. and Nagao, H. (2005) Phys. Particle Nuclei, 36 Suppl., S127.Google Scholar
  18. Liu, A. Y., Mazin, I.I., and Kortus, J. (2001) Phys. Rev. Lett. 87, 087005.CrossRefADSGoogle Scholar
  19. Matveev, K. A. and Larkin, A. I. (1997) Phys. Rev. Lett. 78, 3749.CrossRefADSGoogle Scholar
  20. McMillan, W. L. (1968) Phys. Rev. 167, 331.CrossRefADSGoogle Scholar
  21. Moskalenko, V. A. (1959) Fiz. Met. Metalloved 8, 503.Google Scholar
  22. Nagamatsu, J., Nakamura, N., Muranaka, T., Zentani, Y., and Akimitsu, J. (2001) Nature 410, 63.CrossRefADSGoogle Scholar
  23. Nagao, H., Nishino, M., Mitani, M., Yoshioka, Y and Yamaguchi, K. (1997) Int. J. Quantum Chem. 65, 947.CrossRefGoogle Scholar
  24. Nagao, H., Mitani, M., Nishino, M., Shigeta, Y, Yoshioka, Y and Yamaguchi, K. (1998) Int. J. Quantum Chem. 70, 1075.CrossRefGoogle Scholar
  25. Nagao, H., Mitani, M., Nishino, M., Shigeta, Y, Yoshioka, Y and Yamaguchi, K. (1999) Int. J. Quantum Chem. 75, 549.CrossRefGoogle Scholar
  26. Nagao, H., Nishino, M., Shigeta, Y, Yoshioka, Y and Yamaguchi, K. (2000) Int. J. Quantum. Chem. 80, 721.CrossRefGoogle Scholar
  27. Nagao, H., Nishino, M., Shigeta, Y, Yoshioka, Y and Yamaguchi, K. (2000) J. Chem. Phys. 113, 11237.CrossRefADSGoogle Scholar
  28. Nagao, H., Yaremko, A. M., Kruchinin, S. P. and Yamaguchi, K. (2002) New Trends in Superconductivity, P155-165, Kluwer Academic Publishers.Google Scholar
  29. Nagao, H., Kruchinin, S. R, Yaremko, A. M. and Yamaguchi, K. (2002) Int. J. Mod. Phys. B, 16, 3419.CrossRefADSGoogle Scholar
  30. Nagao, H., Kawabe, H., Kruchinin, S. R, Manske, D. and Yamaguchi, K. (2003) Mod. Phys. Len. B 17, 423.CrossRefADSGoogle Scholar
  31. Nagao, H., Kawabe, H., Kruchinin, S. R, to appear.Google Scholar
  32. Ralph, D. C., Black, C. T. and Tinkham, M. (1995) Phys. Rev. Lett. 74, 3241.CrossRefADSGoogle Scholar
  33. Smith, R. A. and Ambegaokar (1996) Phys. Rev. Lett. 77, 4962.CrossRefADSGoogle Scholar
  34. Suhl, H., Matthias, B. T. and Walker, R. (1959) Phys. Rev. Lett. 3, 552.MATHCrossRefADSGoogle Scholar
  35. von Delft, J., Zaikin, A. D., Golubev, D. S. and Tichy, W. (1996) Phys. Rev. Lett. 77, 3189.CrossRefADSGoogle Scholar
  36. Yamaji, K. and Shimoi, Y (1994) Physica C 222, 349.CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Hidemi Nagao
    • 1
  • Hiroyuki Kawabe
    • 2
  • Sergei P. Kruchinin
    • 3
  1. 1.Division of Mathematical and Physical Science, Graduate School of Natural Science and TechnologyKanazawa UniversityKakuma, KanazawaJapan
  2. 2.Department of Social Work, Faculty of Social WorkKinjo UniversityKasamaJapan
  3. 3.Bogolyubov Institute for Theoretical PhysicsThe Ukrainian National Academy of ScienceKievUkraine

Personalised recommendations