Advertisement

Empirically Derived Probability Maps to Downscale Aggregated Land-Use Data

  • N. Dendoncker
  • P. Bogaert
  • M. Rounsevell
Part of the The GeoJournal Library book series (GEJL, volume 90)

Abstract

Land-use simulation results are often provided at spatial resolutions that are too coarse to establish links with local or regional studies that, for example, deal with the physical or ecological impacts of land-use change. This chapter aims to use novel spatial statistical techniques to derive representations of land-use patterns at a resolution of 250 metres based on aggregate land-use change simulations. The proposed statistical downscaling method combines multinomial autologistic regression and an iterative procedure using Bayes’ theorem. Based on these methods, a set of probability maps of land-use presence is developed at two time steps. The method’s low data requirements (only land-use datasets are used) make it easily replicable, allowing application over a wide geographic area. The potential of the method to downscale land-use change scenarios is shown for a small area in Belgium using the CORINE land-cover dataset.

Keywords

Downscaling multinomial logistic regression Bayes’ theorem suitability maps 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anselin, L. (2002) Under the hood. Issues in the specification of spatial regression models, Agricultural Economics, 27: 247–267.CrossRefGoogle Scholar
  2. Augustin, N.H., Cummins, R.P. and French, D.D. (2001) Exploring spatial vegetation dynamics using logistic regression and a multinomial logit model, Journal of Applied Ecology, 38: 991–1006.CrossRefGoogle Scholar
  3. Ben-Akiva, M. and Lerman, S.R. (1985) Discrete Choice Analysis: Theory and Applications to Travel Demand, Cambridge, MA.Google Scholar
  4. Bhat, C.R. and Guo, J. (2003) A mixed spatially correlated logit model: formulation and application to residential choice modelling, In IATBR conference, Lucerne, Switzerland.Google Scholar
  5. Dendoncker, N., Bogaert, P. and Rounsevell, M. (2005) A statistical methodology to downscale aggregated land use data and scenarios, Journal of Land Use Science(Submitted).Google Scholar
  6. European Commission (1993) Corine land cover map and technical guide, Technical report, European Union Directorate General Environment (Nuclear Safety and Civil Protection), Luxembourg.Google Scholar
  7. Gauthier, G., Giroux, J.F., Reed, A., Brechet, A. and Belanger, L. (2005) Interactions between land use, habitat use, and population increase in greater snow geese: what are the consequences for natural wetlands? Global Change Biology, 11(6): 856–868.CrossRefGoogle Scholar
  8. Hagen, A. (2002) Map comparison – methods, Technical report, Riks, Maastricht.Google Scholar
  9. Hilferink, M. and Rietveld, P. (1998) Land use scanner: an integrated GIS-based model for long term projections of land use in urban and rural areas, Technical report, Tinbergen Institute, Amsterdam.Google Scholar
  10. Lettens, S., Van Orshoven, J., van Wesemael, B., Perrin, D. and Roelandt, C. (2004) The inventory-based approach for prediction of SOC change following land use change, Biotechnology, Agronomy, Society and Environment, 8(2): 141–146.Google Scholar
  11. McGarigal, K., Cushman, S.A., Neel, M.C. and Ene, E. (2002) FRAGSTATS: Spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachussetts, Amherst. Available at the following website: www.umass.edu/landeco/research/fragstats/fragstats.htmlGoogle Scholar
  12. McMillen, D. (2001) An empirical model of urban fringe land use, Land Economics, 65(2): 138–145.CrossRefGoogle Scholar
  13. Mertens, B. and Lambin, E.F. (1997) Spatial modelling of deforestation in Southern Cameroon. spatial disaggregation of diverse deforestation processes, Applied Geography, 17: 143–162.CrossRefGoogle Scholar
  14. Mohammadian, A. and Kanaroglou, P.S. (2003) Applications of spatial multinomial logit model to transportation planning. In: moving through nets: the physical and social dimensions of travel, Lucerne.Google Scholar
  15. Mücher, C.A., Steinnocher, K.T., Kressler, F.P. and Heunks, C. (2000) Land cover characterization and change detection for environmental monitoring of pan-Europe, International Journal of Remote Sensing, 21(6): 1159–1181.CrossRefGoogle Scholar
  16. Overmars, K.P., de Koning, G.H.J. and Veldkamp, A. (2003) Spatial autocorrelation in multi-scale land use models, Ecological Modelling, 164: 257–270.CrossRefGoogle Scholar
  17. Parker, D.C. and Meretsky, V. (2004) Measuring pattern outcomes in an agent-based model of edge-effect externalities using spatial metrics, Agriculture, Ecosystems and Environment, 101(2–3): 233–250.CrossRefGoogle Scholar
  18. Peppler-lisbach, C. (2003) Predictive modelling of historical and recent land use patterns, Phytocoenologia, 33(4): 565–590.CrossRefGoogle Scholar
  19. Pontius, R.G. (2000) Quantification error versus location error in comparison of categorical maps, Photogrammetric Engineering and Remote Sensing, 66(8): 1011–1016.Google Scholar
  20. Richards, J.A. and Jia, X. (1999) Remote Sensing Digital Image Analysis, An Introduction. Springer, Berlin.Google Scholar
  21. Rounsevell, M.D.A., Reginster, I., Araujo, M.B., Carter, T.R., Dendoncker, N., Ewert, F., House, J.I., Kankaanpää, S., Leemans, R., Metzger, M., Schmit, C., Smith, P. and Tuck, G. (2006) A coherent set of future land use change scenarios for Europe, Agriculture, Ecosystems and Environment, 114: 57–68.CrossRefGoogle Scholar
  22. Schmit, C., Rounsevell, M.D.A. and La Jeunesse, I. (2006) The limitations of spatial land use data in environmental analysis and policy, Environmental Science and Policy, 9(2): 174–188.CrossRefGoogle Scholar
  23. Schröter, D., Cramer, W., Leemans, R., Prentice, C., Arnell, A.W., Araujo, M.B., Bondeau, A., Bugmann, H., Carter, T.R., de la Vega-Leinert, A.C., Erhard, M., Ewert, F., Fritsch, P., Friedlingstein, P., Glendining, M., Gracia, C.A., Hickler, T., House, J.I., Hulme, M., Kankaanpää, S., Klein, R.J.T., Lavorel, S., Lindner, M., Liski, J., Metzger, M., Meyer, J., Mitchell, T., Morales, P., Reidsma, P., Pla, E., Pluimers, J., Pussinen, A., Reginster, I., Rounsevell, M., Sanchez, A., Sabatè, S., Sitch, S., Smith, B., Smith, J., Smith, P., Stykes, M.T., Thonicke, K., Thuiller, W., Tuck, G., van der Werf, G., Vayreda, J., Wattenbach, M., Wilson, D.W., Woodward, F.I., Zaehle, S., Zierl, B., Zudin, S., Acosta-Michlik, L., Moreno, R., Espinera, G.Z., Mohren, F., Bakker, M., and Badeck, F. (2005) Ecosystem service supply and vulnerability to global change in Europe, Science, 310(5752): 1333–1337.CrossRefGoogle Scholar
  24. Serneels, S. and Lambin, E.F. (2001) Proximate causes of land-use change in Narok district, Kenya: a spatial statistical model, Agriculture, Ecosystems and Environment, 85: 65–81.CrossRefGoogle Scholar
  25. Veldkamp, A. and Fresco, L.O. (1996) Clue-CR: an integrated multiscale model to simulate land use change scenarios in Costa Rica, Ecological Modelling, 91: 231–248.CrossRefGoogle Scholar
  26. Verburg, P.H., Veldkamp, A. and Espaldon, R.L.V. (2002) Modeling the spatial dynamics of regional land use: the clue-s model, Environmental Management, 3: 391–405.CrossRefGoogle Scholar
  27. Verburg, P.H, de Nijs, T., van Eck, J.R., Visser, H. and de Jong, K. (2004) A method to analyse neighbourhood characteristics of land use patterns, Computers, Environment and Urban Systems, 28(6): 667–690.CrossRefGoogle Scholar
  28. Verburg, P.H, Schulp, C.J.E., Witte, N. and Veldkamp, A. (2006) Downscaling of land use change scenarios to assess the dynamics of European landscapes, Agriculture, Ecosystems and Environment, 114: 39–56.CrossRefGoogle Scholar
  29. White, R. and Engelen, G. (1993) Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land use patterns, Environment and Planning A, 25: 1175–1199.CrossRefGoogle Scholar
  30. Wimberly, M.C. and Ohmann, J.L. (2004) A multi-scale assessment of human and environmental constraints on forest land cover change on the Oregon (USA) coast range, Landscape Ecology, 19: 631–646.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • N. Dendoncker
    • 1
  • P. Bogaert
    • 2
  • M. Rounsevell
    • 1
  1. 1.Département de GéographieUniversité Catholique de LouvainBelgium
  2. 2.Département d’AgronomieUniversité Catholique de LouvainBelgium

Personalised recommendations