ncovering the Plant Metabolome: Current and Future Challenges

  • Ute Roessner-Tunali


Metabolic Network Metabolite Profile Metabolic Flux Analysis Mass Spectrum Library Roasted Coffee Bean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aharoni, A., Ric de Vos, C.H., Verhoeven, H.A., Maliepaard, C.A., Kruppa, G., Bino, R., and Goodenowe, D.B., 2002, Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass Spectrometry, OMICS 6:217-234.CrossRefPubMedGoogle Scholar
  2. Arlt, K., Brandt, S., and Kehr, J., 2001, Amino acid analysis in five pooled single plant cell samples using capillary electrophoresis coupled to laser-induced fluorescence detection, J. Chrom. A 926:319-325.CrossRefGoogle Scholar
  3. Bino, R.J., Hall, R.H., Fiehn, O., Kopka, J., Saito, K., Draper, J., Nikolau, B., Mendes, P., Roessner-Tunali, U., Beale, M., Trethewey, R.N., Lange, B.M., Syrkin Wurtele, E., and Sumner, L., 2004, Opinion: Potential of Metabolomics as a Functional Genomics Tool, Trends Plant Sci. 9:418-425.CrossRefPubMedGoogle Scholar
  4. Borisjuk, L., Rolletschek, H., Walenta, S., Panitz, R., Wobus, U., and Weber, H., 2003, Energy status and its control on embryogenesis of legumes: ATP distribution within Vicia faba embryos is developmentally regulated and correlated with photosynthetic capacity, Plant J. 36:318-329.CrossRefPubMedGoogle Scholar
  5. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach, J., Ansorge, W., Ball, C.A., Causton, H.C., Gaasterland, T., Glenisson, P., Holstege, F.C., Kim, I.F., Markowitz, V., Matese, J.C., Parkinson, H., Robinson, A., Sarkans, U., SchulzeKremer, S., Stewart, J., Taylor, R., Vilo, J., and Vingron, M., 2001, Minimum information about a microarray experiment (MIAME)-toward standards for microarray data, Nat. Genet. 29:365-371.CrossRefPubMedGoogle Scholar
  6. Broeckling, C.D., Huhman, D.V., Farag, M.A., Smith, J.T., May, G.D., Mendes, P., Dixon, R.A., and Sumner, L.W., 2005, Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism, J. Exp. Bot. 56: 323-336.CrossRefPubMedGoogle Scholar
  7. Celis, J.E., Kruhoffer, M., Gromova, I., Frederiksen, C., Ostergaard, M., Thykjaer, T., Gromov, P., Yu, J., Palsdottir, H., Magnusson, N., and Ornoft, T.F., 2000, Gene expression profiling: monitoring transcription and translation products using DNA microarrays and proteomics, FEBS Lett. 480:2-16.CrossRefPubMedGoogle Scholar
  8. Colebatch, G., Desbrosses, G., Ott, T., Krusell, L., Montanari, O., Kloska, S., Kopka, J., and Udvardi, M.K., 2004, Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus, Plant J. 39:487-512.CrossRefPubMedGoogle Scholar
  9. Cook, D., Fowler, S., Fiehn, O., and Thomashow, M.F., 2004, A prominent role for the CBF cold response pathway in configuring the low-temperature metabolomie of Arabidopsis, Proc. Natl. Acad. Sci. USA 101:15243-15248.CrossRefPubMedGoogle Scholar
  10. Duran, A.L., Yang, J., Wang, L., and Sumner, L.W., 2003, Metabolomics spectral formatting, alignment and conversion tools (MSFACTs), Bioinformatics 19:2283-2293.CrossRefPubMedGoogle Scholar
  11. Famili, I., Foerster, J., Nielsen, J., and Palsson, B.O., 2003, Saccharomyces cerevisiae phenotypes can be predicted by using contraint-based analysis of a genome-scale reconstructed metabolic network, Proc. Natl. Acad. Sci. USA 100:13134-13139.CrossRefPubMedGoogle Scholar
  12. Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R.N., and Willmitzer, L., 2000, Metabolite profiling for plant functional genomics, Nat. Biotechnol. 18:1157-1161.CrossRefPubMedGoogle Scholar
  13. Fiehn, O., 2003, Metabolic networks of Cucurbita maxima phloem, Phytochem 62:875-86.CrossRefGoogle Scholar
  14. Foerster, J., Gombert, A.K., and Nielsen, J., 2002, A functional genomics approach using metabolomics and in silico pathway analysis, Biotechnol. Bioengineering 79:703-712.CrossRefGoogle Scholar
  15. Goodacre, R., Vaidyanathan, S., Dunn, W.B., Harrigan, G.G., and Kell, D.B., 2004, Metabolomics by numbers: acquiring and understanding global metabolite data, Trends Biotechnol. 22:245-252.CrossRefPubMedGoogle Scholar
  16. Goto, S., Okuno, Y., Hattori, M., Nishioka, T., and Kanehisa, M., 2002, LIGANS: database of chemical compounds and reactions in biological pathways, Nucleic Acid Res. 30:402-404.CrossRefPubMedGoogle Scholar
  17. Garcia, A.B., Engler, J., Iyer, S., Gerats, T., Van Montagu, M., and Caplan, A.B., 1997, Effects of Osmoprotectants upon NaCl Stress in Rice, Plant Physiol. 115:159-169.PubMedGoogle Scholar
  18. Hardiman, G., 2004, Microarray platforms - comparisons and contrasts, Pharmacogenomics 5:487-502.CrossRefPubMedGoogle Scholar
  19. Heazlewood, J.L. and Millar, A.H., 2003, Integrated plant proteomics - putting the green genomes to work, Funct. Plant Biol. 30:471-482.CrossRefGoogle Scholar
  20. Huhman, D.V. and Sumner, L.W., 2002, Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer, Phytochemistry 59:347-360.CrossRefPubMedGoogle Scholar
  21. Jenkins, H., Hardy, N., Beckmann, M., Draper, J., Smith, A.R., Taylor, J., Fiehn, O., Goodacre, R., Bino, R.J., Hall, R., Kopka, J., Lane, G.A., Lange, B.M., Liu, J.R., Mendes, P., Nikolau, B.J., Oliver, S.G., Paton, N.W., Rhee, S., Roessner-Tunali, U., Saito, K., Smedsgaard, J., Sumner, L.W., Wang, T., Walsh, S., Syrkin Wurtele, E., and Kell, D.B., 2004, A proposed framework for the description of plant metabolomics experiments and their results, Nat Biotechnol 22:1601-1606.CrossRefPubMedGoogle Scholar
  22. Kaplan, F., Kopka, J., Haskell, D.W., Zhao, W., Schiller, K.C., Gatzke, N., Sung, D.Y., and Guy, C.L., 2004, Exploring the temperature-stress metabolomie of Arabidopsis, Plant Physiol. 136:4159-4168.CrossRefPubMedGoogle Scholar
  23. Kitano, H., 2002, Systems Biology: A Brief Overview, Science 295:1662-1664.CrossRefPubMedGoogle Scholar
  24. Kopka, J., Fernie, A.R., Weckwerth, W., Gibon, Y., and Stitt, M., 2004, Metabolite profiling in plant biology: Platforms and destinations, Genome Biol. 5:109-117.CrossRefPubMedGoogle Scholar
  25. Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmüller, E., Dörmann, P., Gibon, Y., Stitt, M., Willmitzer, L., Fernie, A.R., and Steinhauser, D., 2005, GMD@CSB.DB: The Golm Metabolome Database, Bioinformatics 21:1635-1638.CrossRefPubMedGoogle Scholar
  26. Krieger, C.J., Zhang, P., Mueller, L.A., Wang, A., Paley, S., Arnaud, M., Pick, J., Rhee, S.Y., and Karp, P.D., 2004, MetaCyc: a multiorganism database of metabolic pathways and enzymes, Nucleic Acid Res 32(Database issue):D438-442.CrossRefPubMedGoogle Scholar
  27. Luedemann, A., Weicht, D., Selbig, J., and Kopka, J., 2004, PaVESy: pathway visualization and editing system, Bioinformatics 20:2841-2844.CrossRefGoogle Scholar
  28. Mueller, L.A., Zhang, P., and Rhee, S.Y., 2003, AraCyc: a biochemical pathway database for Arabidopsis, Plant Physiol. 132:453-460.CrossRefPubMedGoogle Scholar
  29. Muller, A., Duchting, P., and Weiler, E.W., 2002, A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana, Planta 216:44-56.CrossRefPubMedGoogle Scholar
  30. Roessner, U., Wagner, C., Kopka, J., Trethewey, R.N., and Willmitzer, L., 2000, Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry, Plant J. 23:131-142.CrossRefPubMedGoogle Scholar
  31. Roessner, U., Luedemann, A., Brust, D., Fiehn, O., Linke, T., Willmitzer, L., and Fernie, A.R., 2001a, Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems, Plant Cell 13:11-29.CrossRefGoogle Scholar
  32. Roessner, U., Willmitzer, L., and Fernie, A. R., 2001b, High-resolution metabolic phenotyping of genetically and environmentally diverse plant systems - identification of phenocopies, Plant Physiol. 127:749-764.CrossRefGoogle Scholar
  33. Roessner, U., Willmitzer, L., and Fernie, A.R., 2002, Metabolic profiling and biochemical phenotyping of plant systems, Plant Cell Rep. 21:189-196.CrossRefGoogle Scholar
  34. Roessner-Tunali, U., Hegemann, B., Lytovchenko, A., Carrari, F., Bruedigam, C., Granot, D., and Fernie, A.R., 2003, Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development, Plant Physiol. 133:84-99.CrossRefPubMedGoogle Scholar
  35. Roessner-Tunali, U., Lui, J., Leisse, A., Balbo, I., Perez-Melis, A., Willmitzer, L., and Fernie, A.R., 2004, Flux analysis of organic and amino acid metabolism in potato tubers by gas chromatography-mass spectrometry following incubation in 13C labelled isotopes, Plant J. 39:668-679.CrossRefPubMedGoogle Scholar
  36. Ryan, D., Shellie, R., Tranchida, P., Casilli, A., Mondello, L., and Marriott, P., 2004, Analysis of roasted coffee bean volatiles by using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry, J. Chrom. A 1054:57-65.Google Scholar
  37. Sato, S., Soga, T., Nishioka, T., and Tomita, M., 2004, Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection, Plant J. 40:151-163.CrossRefPubMedGoogle Scholar
  38. Schauer, N., Steinhauser, D., Strelkov, S., Schomburg, D., Allison, G., Moritz, T., Lundgen, K., Roessner-Tunali, U., Forbes, M.G., Willmitzer, L., Fernie, A.R., and Kopka, J., 2005, GC-MS libraries for the rapid identification of metabolites in complex biological samples, FEBS Lett. 579: 1332-1337.CrossRefPubMedGoogle Scholar
  39. Schwender, J., Ohlrogge, J.B., and Shachar-Hill, Y., 2003, A flux model of glycolysis and the oxidative pentosephosphate pathway in developing Brassica napus embryos, J. Biol. Chem. 278:29442-29453.CrossRefPubMedGoogle Scholar
  40. Schwender, J., Ohlrogge, J., and Shachar-Hill, Y., 2004, Understanding flux in plant metabolic networks, Curr. Opin. Plant Biol. 7:309-317.CrossRefPubMedGoogle Scholar
  41. Stitt, M., Muller, C., Matt, P., Gibon, Y., Carillo, P., Morcuende, R., Scheible, W.R., and Krapp, A., 2002, Steps toward an integrated view of nitrogen metabolism, J. Exp. Bot. 53:959-570.CrossRefPubMedGoogle Scholar
  42. Steuer, R., Kurths, J., Fiehn, O., and Weckwerth, W., 2003, Observing and interpreting correlations in metabolomic networks, Bioinformatics 19:1019-1026.CrossRefPubMedGoogle Scholar
  43. Sweetlove, L.J., Last, R.L., and Fernie, A.R., 2003, Predictive metabolic engineering: A goal for systems biology, Plant Physiol. 132:420-425.CrossRefPubMedGoogle Scholar
  44. Syrkin Wurtele, E., Li, J., Diao, L., Zhang, H., Foster, C.M., Fatland, B., Dickerson, J., Brown, A., Cox, Z., Cook, D., Lee, E-K. and Hofmann, H., 2003, MetNet: software to build and model the biogenetic lattice of Arabidopsis, Comp. Funct. Genom. 4:239-245.CrossRefGoogle Scholar
  45. Taylor, C.F., Paton, N.W., Garwood, K.L., Kirby, P.D., Stead, D.A., Yin, Z., Deutsch, E.W., Selway, L., Walker, J., Riba-Garcia, I., Mohammed, S., Deery, M.J., Howard, J.A., Dunkley, T., Aebersold, R., Kell, D.B., Lilley, K.S., Roepstorff, P., Yates, J.R. 3rd, Brass, A., Brown, A.J., Cash, P., Gaskell, S.J., Hubbard, S.J. and Oliver, S.G., 2003, A systematic approach to modeling, capturing, and disseminating proteomics experimental data, Nat. Biotechnol. 21:247-254.CrossRefPubMedGoogle Scholar
  46. Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., Selbig, J., Muller, L.A., Rhee, S.Y., and Stitt, M., 2004, MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes, Plant J. 37:914-939.CrossRefPubMedGoogle Scholar
  47. Tolstikov, V.V., and Fiehn, O., 2002, Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion mass trap spectrometry, Anal. Biochem. 301:298-307.CrossRefPubMedGoogle Scholar
  48. Tolstikov, V.V., Lommen, A., Nakanishi, K., Tanaka, N., and Fiehn, O., 2003, Monolithic silica-based capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant metabolomics, Anal. Chem. 75:6737-6740.CrossRefPubMedGoogle Scholar
  49. Urbanczyk-Wochniak, E., Luedemann, A., Kopka, J., Selbig, J., Roessner-Tunali, U., Willmitzer, L., and Fernie, A.R., 2003, Parallel analysis of transcript and metabolic profiles: a new approach in systems biology, EMBO Rep. 4:989-992.CrossRefPubMedGoogle Scholar
  50. Urbanczyk-Wochniak, E. and Fernie, A.R., 2005, Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants, J. Exp. Bot. 56:309-321.CrossRefPubMedGoogle Scholar
  51. von Roepenack-Lahaye, E., Degenkolb, T., Zerjeski, M., Franz, M., Roth, U., Wessjohann, L., Schmidt, J., Scheel, D., and Clemens, S., 2004, Profiling of arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry, Plant Physiol. 134:548-559.CrossRefPubMedGoogle Scholar
  52. Wagner, C., Sefkow, M., and Kopka, J., 2003, Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles, Phytochemistry 62:887-900.CrossRefPubMedGoogle Scholar
  53. Weckwerth, W., 2003, Metabolomics in systems biology, Annu Rev. Plant Biol. 54:669-689.CrossRefGoogle Scholar
  54. Weckwerth, W., Loureiro, M.E., Wenzel, K., and Fiehn, O., 2004, Differential metabolic networks unravel the effects of silent plant phenotypes, Proc. Natl. Acad. Sci. USA 18:7809-7814.CrossRefGoogle Scholar
  55. Wolfender, J.L., Ndjoko, K., and Hostettmann, K., 2003, Liquid chromatography with ultraviolet absorbance-mass spectrometric detection and with nuclear magnetic resonance spectroscopy: a powerful combination for the on-line structural investigation of plant metabolites, J. Chromatogr. A 1000:437-455.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Ute Roessner-Tunali
    • 1
  1. 1.Australian Centre for Plant Functional Genomics, School of BotanyUniversity of MelbourneVictoriaAustralia

Personalised recommendations