Advertisement

Spatial Logic + Temporal Logic = ?

  • Roman Kontchakov
  • Agi Kurucz
  • Frank Wolter
  • Michael Zakharyaschev

Keywords

Topological Space Modal Logic Temporal Logic Linear Temporal Logic Spatial Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello, M. and van Benthem, J. (2002). A modal walk through space. Journal of Applied Non-Classical Logics, 12(3–4):319–364.CrossRefGoogle Scholar
  2. Alexandroff, P. S. (1937). Diskrete Räume. Matematicheskii Sbornik, 2 (44):501–518.Google Scholar
  3. Allen, J. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26:832–843.CrossRefGoogle Scholar
  4. Allen, J. (1984). Towards a general theory of action and time. Artificial Intelligence, 26:123–154.CrossRefGoogle Scholar
  5. Allouche, J.-P., Courbage, M., and Skordev, G. (2001). Notes on cellular automata. Cubo, Matemática Educacional, 3:213–244.Google Scholar
  6. Areces, C., Blackburn, P., and Marx, M. (2000). The computational complexity of hybrid temporal logics. Logic Journal of the IGPL, 8:653–679.CrossRefGoogle Scholar
  7. Arhangel’skii, A. and Collins, P. (1995). On submaximal spaces. Topology and its Applications, 64:219–241.CrossRefGoogle Scholar
  8. Asher, N. and Vieu, L. (1995). Toward a geometry of common sense: A semantics and a complete axiomatization of mereotopology. In Mellish, C., editor, Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI-95), pages 846–852. Morgan Kaufmann.Google Scholar
  9. Balbiani, P. and Condotta, J.-F. (2002). Computational complexity of propositional linear temporal logics based on qualitative spatial or temporal reasoning. In Armando, A., editor, Proceedings of Frontiers of Combining Systems (FroCoS 2002), volume 2309 of Lecture Notes in Computer Science, pages 162–176. Springer.Google Scholar
  10. Balibiani, P., Tinchev, T., and Vakarelov, D. (2004). Modal logics for region-based theories of space. Manuscript.Google Scholar
  11. Barwise, J., editor (1977). Handbook of Mathematical Logic. North-Holland, Amsterdam.Google Scholar
  12. Bennett, B. (1994). Spatial reasoning with propositional logic. In Proceedings of the 4th International Conference on Knowledge Representation and Reasoning, pages 51–62. Morgan Kaufmann.Google Scholar
  13. Bennett, B., Cohn, A., Wolter, F., and Zakharyschev, M. (2002). Multidimensional modal logic as a framework for spatio-temporal reasoning. Applied Intelligence, 17:239–251.CrossRefGoogle Scholar
  14. Blackburn, P. (1992). Fine grained theories of time. In Aurnague, M., Borillo, A., Borillo, M., and Bras, M., editors, Proceedings of the 4th European Workshop on Semantics of Time, Space, and Movement and Spatio-Temporal Reasoning, pages 299–320, Château de Bonas, France. Groupe ‘Langue, Raisonnement, Calcul’, Toulouse.Google Scholar
  15. Bourbaki, N. (1966). General Topology, Part 1. Hermann, Paris and Addison-Wesley.Google Scholar
  16. Brown, J. R. (1976). Ergodic Theory and Topological Dynamics. Academic Press.Google Scholar
  17. Burgess, J. (1979). Logic and time. Journal of Symbolic Logic, 44:566–582.CrossRefGoogle Scholar
  18. Clarke, E. and Emerson, E. (1981). Design and synthesis of synchronisation skeletons using branching time temporal logic. In Kozen, D., editor, Logic of Programs, volume 131 of Lecture Notes in Computer Science, pages 52–71. Springer.Google Scholar
  19. Clarke, E., Grumberg, O., and Peled, D. (2000). Model Checking. MIT Press.Google Scholar
  20. Cohn, A. (1997). Qualitative spatial representation and reasoning techniques. In Brewka, G., Habel, C., and Nebel, B., editors, KI-97: Advances in Artificial Intelligence, volume 1303 of Lecture Notes in Computer Science, pages 1–30. Springer.Google Scholar
  21. Cohn, A. G. and Hazarika, S. M. (2001). Qualitative spatial representation and reasoning: An overview. Fundamenta Informaticae, 46:1–29.Google Scholar
  22. Davis, E. (1990). Representations of Commonsense Knowledge. Morgan Kaufmann.Google Scholar
  23. Egenhofer, M. and Franzosa, R. (1991). Point-set topological spatial relations. International Journal of Geographical Information Systems, 5:161–174.CrossRefGoogle Scholar
  24. Egenhofer, M. J. and Herring, J. R. (1991). Categorizing topological relationships between regions, lines and point in geographic databases. Technical report, University of Maine.Google Scholar
  25. Emerson, E. and Halpern, J. (1986). ‘Sometimes’ and ‘not never’ revisited: on branching versus linear time. Journal of the ACM, 33:151–178.CrossRefGoogle Scholar
  26. Fagin, R., Halpern, J., Moses, Y., and Vardi, M. (1995). Reasoning about Knowledge. MIT Press.Google Scholar
  27. Finger, M. and Gabbay, D. (1992). Adding a temporal dimension to a logic system. Journal of Logic, Language and Information, 2:203–233.CrossRefGoogle Scholar
  28. Fisher, M., Gabbay, D., and Vila, L., editors (2005). Handbook of Temporal Reasoning in Artificial Intelligence. Elsevier.Google Scholar
  29. Gabbay, D., Hodkinson, I., and Reynolds, M. (1994). Temporal Logic: Mathematical Foundations and Computational Aspects, Volume 1. Oxford University Press.Google Scholar
  30. Gabbay, D., Kurucz, A., Wolter, F., and Zakharyaschev, M. (2003). Many-Dimensional Modal Logics: Theory and Applications, volume 148 of Studies in Logic. Elsevier.Google Scholar
  31. Gabbay, D., Reynolds, M., and Finger, M. (2000). Temporal Logic: Mathematical Foundations and Computational Aspects, Volume 2. Oxford University Press.Google Scholar
  32. Gabelaia, D., Kontchakov, R., Kurucz, A., Wolter, F., and Zakharyaschev, M. (2005a). Combining spatial and temporal logics: expressiveness vs. complexity. Journal of Artificial Intelligence Research (JAIR), 23:167–243.Google Scholar
  33. Gabelaia, D., Kurucz, A., Wolter, F., and Zakharyaschev, M. (2005b). Products of ‘transitive’ modal logics. Journal of Symbolic Logic, 70(3):993–1021.CrossRefGoogle Scholar
  34. Gabelaia, D., Kurucz, A., Wolter, F., and Zakharyaschev, M. (2006). Non-primitive recursive decidability of products of modal logics with expanding domains. Annals of Pure and Applied Logic, 142(1–3):245–268.CrossRefGoogle Scholar
  35. Gerevini, A. and Nebel, B. (2002). Qualitative spatio-temporal reasoning with RCC-8 and Allen’s interval calculus: Computational complexity. In Proceedings of the 15th European Conference on Artificial Intelligence (ECAI’02), pages 312–316. IOS Press.Google Scholar
  36. Gödel, K. (1933). Eine Interpretation des intuitionistischen Aussagenkalküls. Ergebnisse eines mathematischen Kolloquiums, 4:39–40.Google Scholar
  37. Goranko, V., Montanari, A., and Sciavicco, G. (2004). A road map of interval temporal logics and duration calculi. Journal of Applied Non-Classical Logics, 14:9–54.CrossRefGoogle Scholar
  38. Goranko, V. and Passy, S. (1992). Using the universal modality: gains and questions. Journal of Logic and Computation, 2:5–30.CrossRefGoogle Scholar
  39. Gotts, N. (1996). An axiomatic approach to topology for spatial information systems. Technical Report 96.25, School of Computer Studies, University of Leeds.Google Scholar
  40. Halpern, J. and Vardi, M. (1989). The complexity of reasoning about knowledge and time I: lower bounds. Journal of Computer and System Sciences, 38: 195–237.CrossRefGoogle Scholar
  41. Hirshfeld, Y. and Rabinovich, A. (1999). Quantitative temporal logic. In Proceedings of Computer Science Logic 1999, pages 172–187. Springer.Google Scholar
  42. Hodkinson, I., Wolter, F., and Zakharyaschev, M. (2000). Decidable fragments of first-order temporal logics. Annals of Pure and Applied Logic, 106:85–134.CrossRefGoogle Scholar
  43. Hodkinson, I., Wolter, F., and Zakharyaschev, M. (2001). Monodic fragments of first-order temporal logics: 2000–2001 A.D. In Nieuwenhuis, R. and Voronkov, A., editors, Logic for Programming, Artificial Intelligence and Reasoning, volume 2250 of Lecture Notes in Artificial Intelligence, pages 1–23. Springer.Google Scholar
  44. Hughes, G.E. and Cresswell, M.J. (1996). A New Introduction to Modal Logic. Methuen, London.Google Scholar
  45. Kamp, H. (1968). Tense Logic and the Theory of Linear Order. PhD thesis, University of California, Los Angeles.Google Scholar
  46. Katok, A. and Hasselblatt, B. (1995). Introduction to Modern Theory of Dynamical Systems, volume 54 of Encyclopedia of mathematics and its applications. Elsevier.Google Scholar
  47. Konev, B., Kontchakov, R., Wolter, F., and Zakharyaschev, M. (2006a). Dynamic topological logics over spaces with continuous functions. In Hodkinson, I. and Venema, Y., editors, Advances in Modal Logic, vol. 6, pages 299–318. College Publications, London.Google Scholar
  48. Konev, B., Kontchakov, R., Wolter, F., and Zakharyaschev, M. (2006b). On dynamic topological and metric logics. Studia Logica, 84:127–158.CrossRefGoogle Scholar
  49. Konev, B., Wolter, F., and Zakharyaschev, M. (2005). Temporal logics over transitive states. In Nieuwenhuis, R., editor, Proceedings of CADE-05, volume 3632 of LNCS, pages 182–203. Springer.Google Scholar
  50. Kremer, P. and Mints, G. (2005). Dynamic topological logic. Annals of Pure and Applied Logic, 131:133–158.CrossRefGoogle Scholar
  51. Kutz, O., Sturm, H., Suzuki, N.-Y., Wolter, F., and Zakharyaschev, M. (2003). Logics of metric spaces. ACM Transactions on Computational Logic, 4: 260–294.CrossRefGoogle Scholar
  52. Lamport, L. (1980). ‘Sometimes’ is sometimes ‘not never’. In Proceedings of the 7th ACM Symposium on Principles of Programming Languages, pages 174–185.Google Scholar
  53. Lewis, C. and Langford, C. (1932). Symbolic Logic. Appleton-Century-Crofts, New York.Google Scholar
  54. Manna, Z. and Pnueli, A. (1992). The Temporal Logic of Reactive and Concurrent Systems. Springer.Google Scholar
  55. Manna, Z. and Pnueli, A. (1995). Temporal Verification of Reactive Systems: Safety. Springer.Google Scholar
  56. McKinsey, J.C.C. (1941). A solution of the decision problem for the Lewis systems S2 and S4, with an application to topology. Journal of Symbolic Logic, 6:117–134.CrossRefGoogle Scholar
  57. McKinsey, J.C.C. and Tarski, A. (1944). The algebra of topology. Annals of Mathematics, 45:141–191.CrossRefGoogle Scholar
  58. Muller, P. (1998). A qualitative theory of motion based on spatio-temporal primitives. In Cohn, A., Schubert, L., and Shapiro, S., editors, Proceedings of the 6th International Conference on Principles of Knowledge Representation and Reasoning (KR’98), pages 131–142. Morgan Kaufmann.Google Scholar
  59. Nutt, W. (1999). On the translation of qualitative spatial reasoning problems into modal logics. In Burgard, W., Christaller, T., and Cremers, A., editors, Advances in Artificial Intelligence. Proceedings of the 23rd Annual German Conference on Artificial Intelligence (KI’99), volume 1701 of Lecture Notes in Computer Science, pages 113–124. Springer.Google Scholar
  60. Ono, H. and Nakamura, A. (1980). On the size of refutation Kripke models for some linear modal and tense logics. Studia Logica, 39:325–333.CrossRefGoogle Scholar
  61. Orlov, I. (1928). The calculus of compatibility of propositions. Mathematics of the USSR, Sbornik, 35:263–286. (In Russian).Google Scholar
  62. Pratt-Hartmann, I. (2002). A topological constraint language with component counting. Journal of Applied Non-Classical Logics, 12(3–4):441–467.CrossRefGoogle Scholar
  63. Prior, A. (1968). Now. Noûs, 2:101–119.CrossRefGoogle Scholar
  64. Randell, D., Cui, Z., and Cohn, A. (1992). A spatial logic based on regions and connection. In Nebel, B., Rich, C., and Swartout, W., editors, Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning (KR’92), pages 165–176. Morgan Kaufmann.Google Scholar
  65. Renz, J. (1998). A canonical model of the region connection calculus. In Cohn, A., Schubert, L., and Shapiro, S., editors, Proceedings of the 6th International Conference on Principles of Knowledge Representation and Reasoning (KR’98), pages 330–341. Morgan Kaufmann.Google Scholar
  66. Renz, J. and Nebel, B. (1999). On the complexity of qualitative spatial reasoning. Artificial Intelligence, 108:69–123.CrossRefGoogle Scholar
  67. Reynolds, M. (2002). Axioms for branching time. Journal of Logic and Computation, 12(4):679–697.CrossRefGoogle Scholar
  68. Schnoebelen, Ph. (2002). Verifying lossy channel systems has nonprimitive recursive complexity. Information Processing Letters, 83:251–261.CrossRefGoogle Scholar
  69. Sheremet, M., Tishkovski, D., Wolter, F., and Zakharyaschev, M. (2006). From topology to metric: modal logic and quantification in metric spaces. In Hodkinson, I. and Venema, Y., editors, Advances in Modal Logic, vol. 6, pages 429–448. College Publications, London.Google Scholar
  70. Sheremet, M., Tishkovsky, D., Wolter, F., and Zakharyaschev, M. (2005a). ‘Closer’representation and reasoning. In Horrocks, I., Sattler, U., and Wolter, F., editors, International Workshop on Description Logics, (DL 2005), pages 25–36.Google Scholar
  71. Sheremet, M., Tishkovsky, D., Wolter, F., and Zakharyaschev, M. (2005b). Comparative similarity, tree automata, and Diophantine equations. In Proceedings of LPAR 2005, volume 3835 of LNAI, pages 651–665. Springer.Google Scholar
  72. Sistla, A. and Clarke, E. (1985). The complexity of propositional linear temporal logics. Journal of the Association for Computing Machinery, 32:733–749.Google Scholar
  73. Slavnov, S. (2003). Two counterexamples in the logic of dynamic topological systems. Technical Report TR–2003015, Cornell University.Google Scholar
  74. Smith, T. and Park, K. (1992). An algebraic approach to spatial reasoning. International Journal of Geographical Information Systems, 6:177–192.CrossRefGoogle Scholar
  75. Stockmeyer, L. (1974). The Complexity of Decision Problems in Automata Theory and Logic. PhD thesis, MIT.Google Scholar
  76. Stone, M. (1937). Application of the theory of Boolean rings to general topology. Transactions of the AMS, 41:321–364.CrossRefGoogle Scholar
  77. Tarski, A. (1938). Der Aussagenkalkül und die Topologie. Fundamenta Mathematicae, 31:103–134.Google Scholar
  78. Thomason, R. (1984). Combinations of tense and modality. In Gabbay, D. and Guenthner, F., editors, Handbook of Philosophical Logic, volume 2, pages 135–165. Reidel, Dordrecht.Google Scholar
  79. Tsao Chen, T. (1938). Algebraic postulates and a geometric interpretation of the Lewis calculus of strict implication. Bulletin of the AMS, 44:737–744.Google Scholar
  80. Vilain, M., Kautz, H., and van Beek, P. (1989). Constraint propagation algorithms for temporal reasoning—a revised report. In Weld, D. S. and de Kleer, J., editors, Readings in Qualitative Reasoning about Physical Systems, pages 373–381. Morgan Kaufmann.Google Scholar
  81. Wolter, F. and Zakharyaschev, M. (1999). Modal description logics: modalizing roles. Fundamenta Informaticae, 39:411–438.Google Scholar
  82. Wolter, F. and Zakharyaschev, M. (2000). Spatial reasoning in RCC–8 with Boolean region terms. In Horn, W., editor, Proceedings of the 14th European Conference on Artificial Intelligence (ECAI 2000), pages 244–248. IOS Press.Google Scholar
  83. Wolter, F. and Zakharyaschev, M. (2002). Qualitative spatio-temporal representation and reasoning: a computational perspective. In Lakemeyer, G. and Nebel, B., editors, Exploring Artifitial Intelligence in the New Millenium, pages 175–216. Morgan Kaufmann.Google Scholar
  84. Wolter, F. and Zakharyaschev, M. (2003). Reasoning about distances. In Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), pages 1275–1280. Morgan Kaufmann.Google Scholar
  85. Wolter, F. and Zakharyaschev, M. (2005a). A logic for metric and topology. Journal of Symbolic Logic, 70:795–828.CrossRefGoogle Scholar
  86. Wolter, F. and Zakharyaschev, M. (2005b). On the computational complexity of metric logics. Manuscript.Google Scholar
  87. Zanardo, A. (1996). Branching-time logic with quantification over branches: the point of view of modal logic. Journal of Symbolic Logic, 61:1–39.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Roman Kontchakov
    • 1
  • Agi Kurucz
    • 2
  • Frank Wolter
    • 3
  • Michael Zakharyaschev
    • 1
  1. 1.Birkbeck CollegeLondon
  2. 2.King's CollegeLondon
  3. 3.University of LiverpoolLiverpool

Personalised recommendations