Modal Logics of Space

  • Johan van Benthem
  • Guram Bezhanishvili

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abashidze, M. (1987). Algebraic Analysis of the Gödel-Löb Modal System. PhD thesis, Tbilisi State University. In Russian.Google Scholar
  2. Abashidze, M. and Esakia, L. (1987). Cantor’s scattered spaces and the provability logic. In Baku International Topological Conference. Volume of Abstracts. Part I, page 3. In Russian.Google Scholar
  3. Aiello, M. (2002a). Spatial Reasoning: Theory and Practice. PhD thesis, ILLC, University of Amsterdam. DS-2002-02.Google Scholar
  4. Aiello, M. (2002b). A spatial similarity based on games: Theory and practice. Journal of the Interest Group in Pure and Applied Logic, 10(1):1–22.Google Scholar
  5. Aiello, M. and Ottens, B. (2007). The mathematical morphological view on reasoning about space. In International Joint Conference on Artificial Intelligence (IJCAI-07), pages 205–211. Morgan Kaufmann.Google Scholar
  6. Aiello, M. and van Benthem, J. (2002a). Logical patterns in space. In Barker-Plummer, D., Beaver, D., van Benthem, J., and di Luzio, P. Scotto, editors, Words, Proofs, and Diagrams, pages 5–25. CSLI, Stanford.Google Scholar
  7. Aiello, M. and van Benthem, J. (2002b). A modal walk through space. Journal of Applied Non-Classical Logics, 12(3–4):319–364.CrossRefGoogle Scholar
  8. Aiello, M., van Benthem, J., and Bezhanishvili, G. (2003). Reasoning about space: The modal way. J. Logic Comput., 13(6):889–920.CrossRefGoogle Scholar
  9. Allen, J. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26:832–843.CrossRefGoogle Scholar
  10. Allen, J. and Hayes, P. (1985). A common sense theory of time. In Joshi, A., editor, IJCAI85, volume 1, pages 528–531. International Joint Conference on Artificial Itelligence, Morgan Kaufmann.Google Scholar
  11. Andréka, H., van Benthem, J., and Németi, I. (1998). Modal logics and bounded fragments of predicate logic. Journal of Philosophical Logic, 27(3):217–274.CrossRefGoogle Scholar
  12. Anger, F., van Benthem, J., Guesgen, H., and Rodriguez, R. (1996). Editorial of the special issue on ‘Space, Time and Computation: Trends and Problems’. International Journal of Applied Intelligence, 6(1):5–9.CrossRefGoogle Scholar
  13. Areces, C. and ten Cate, B. (2006). Hybrid logics. In Handbook of Modal Logic. Google Scholar
  14. Artemov, S. (2006). Modal logic in mathematics. In Handbook of Modal Logic. Google Scholar
  15. Awodey, S. and Kishida, K. (2006). Topological semantics for first-order modal logic. In preparation.Google Scholar
  16. Balbiani, Ph. (1998). The modal multilogic of geometry. Journal of Applied Non-Classical Logics, 8:259–281.Google Scholar
  17. Balbiani, Ph., Fariñas del Cerro, L., Tinchev, T., and Vakarelov, D. (1997). Modal logics for incidence geometries. Journal of Logic and Computation, 7:59–78.CrossRefGoogle Scholar
  18. Barwise, J. (1988). Three views of common knowledge. In Proceedings of the Second Conference on Theoretical Aspects of Reasoning about Knowledge (Pacific Grove, CA, 1988), pages 365–379, Los Altos, CA. Morgan Kaufmann.Google Scholar
  19. Ben-Or, M., Kozen, D., and Reif, J. (1986). The complexity of elementary algebra and geometry. Journal of Computer and System Sciences, 32: 251–264.CrossRefGoogle Scholar
  20. Bennett, B. (1995). Modal logics for qualitative spatial reasoning. Bulletin of the IGPL, 3:1–22.Google Scholar
  21. Bezhanishvili, G., Esakia, L., and Gabelaia, D. (2005). Some results on modal axiomatization and definability for topological spaces. Studia Logica, 81(3): 325–355.CrossRefGoogle Scholar
  22. Bezhanishvili, G. and Gehrke, M. (2005). Completeness of S4 with respect to the real line: revisited. Ann. Pure Appl. Logic, 131(1-3):287–301.CrossRefGoogle Scholar
  23. Bezhanishvili, G., Mines, R., and Morandi, P. (2003). Scattered, Hausdorff-reducible, and hereditary irresolvable spaces. Topology and its Applications, 132:291–306.CrossRefGoogle Scholar
  24. Bezhanishvili, N. and Kupke, C. (2006). Spatio-temporal logics of the real line. In preparation.Google Scholar
  25. Binmore, K. (1994). Game Theory and the Social Contract. MIT Press, Cambridge.Google Scholar
  26. Blackburn, P., de Rijke, M., and Venema, Y. (2001). Modal Logic. Cambridge University Press.Google Scholar
  27. Blass, A. (1990). Infinitary combinatorics and modal logic. J. Symbolic Logic, 55(2):761–778.CrossRefGoogle Scholar
  28. Bloch, I. (2000). Using mathematical morphology operators as modal operators for spatial reasoning. In ECAI 2000, Workshop on Spatio-Temporal Reasoning, pages 73–79.Google Scholar
  29. Blumenthal, L. (1961). A Modern View of Geometry. Dover.Google Scholar
  30. Boolos, G. (1993). The Logic of Provability. Cambridge University Press, Cambridge.Google Scholar
  31. Burgess, J. (1984). Basic tense logic. In Gabbay, D. and Guenthner, F., editors, Handbook of Philosophical Logic, volume II, chapter 2, pages 89–133. Reidel.Google Scholar
  32. Burgess, John P. (1979). Logic and time. J. Symbolic Logic, 44(4):566–582.CrossRefGoogle Scholar
  33. Carnap, Rudolf (1998). Der logische Aufbau der Welt, volume 514 of Philosophische Bibliothek [Philosophical Library]. Felix Meiner Verlag, Hamburg. Reprint of the 1928 original and of the author’s preface to the 1961 edition.Google Scholar
  34. Chagrov, A. and Zakharyaschev, M. (1997). Modal Logic, volume 35 of Oxford Logic Guides. Clarendon Press, Oxford.Google Scholar
  35. Chellas, B. (1980). Modal Logic: An Introduction. Cambridge University Press.Google Scholar
  36. Dabrowski, A., Moss, A., and Parikh, R. (1996). Topological reasoning and the logic of knowledge. Annals of Pure and Applied Logic, 78:73–110.CrossRefGoogle Scholar
  37. de Jongh, D. and Veltman, F. (1985). Lecture Notes on Modal Logic. ILLC, Amsterdam.Google Scholar
  38. de Rijke, M. (1993). Extended Modal Logic. PhD thesis, ILLC, University of Amsterdam.Google Scholar
  39. Doets, Kees (1996). Basic Model Theory. Studies in Logic, Language and Information. CSLI Publications, Stanford, CA.Google Scholar
  40. Engelking, R. (1989). General Topology. Heldermann Verlag.Google Scholar
  41. Esakia, L. (1981). Diagonal constructions, Löb’s formula and Cantor’s scattered spaces. In Studies in Logic and Semantics, pages 128–143. Metsniereba. In Russian.Google Scholar
  42. Esakia, L. (2001). Weak transitivity-restitution. In Study in Logic, volume 8, pages 244–254. Nauka. In Russian.Google Scholar
  43. Esakia, L. (2002). The modal version of Gödel’s second incompleteness theorem and the McKinsey system. In Logical Investigations. Vol. IX, pages 292–300. In Russian.Google Scholar
  44. Esakia, L. (2004). Intuitionistic logic and modality via topology. Annals of Pure and Applied Logic, 127:155–170.CrossRefGoogle Scholar
  45. Fagin, R., Halpern, J., Moses, Y., and Vardi, M. (1995). Reasoning About Knowledge. MIT Press, Cambridge, MA.Google Scholar
  46. Fontaine, G. (2006). Axiomatization of ML and Cheq. Master’s thesis, ILLC, University of Amsterdam.Google Scholar
  47. Gabbay, D., Kurucz, A., Wolter, F., and Zakharyaschev, M. (2003). Many-Dimensional Modal Logics: Theory and Applications. Elsevier, Uppsala. Studies in Logic and the Foundations of Mathematics, Volume 148.Google Scholar
  48. Gabbay, D. and Shehtman, V. (1998). Products of modal logics. I. Log. J. IGPL, 6(1):73–146.CrossRefGoogle Scholar
  49. Gabelaia, D. (1999). Modal logics GL and Grz: semantical comparison. In Proceedings of the ESSLLI Student Session, pages 91–97.Google Scholar
  50. Gabelaia, D. (2001). Modal Definability in Topology. Master’s thesis, ILLC, University of Amsterdam.Google Scholar
  51. Gabelaia, D. (2004). Topological, Algebraic and Spatio-Temporal Semantics for Multi-Dimensional Modal Logics. PhD thesis, King’s College, London.Google Scholar
  52. Gabelaia, D., Kurucz, A., Wolter, F., and Zakharyashev, M. (2005). Products of ‘transitive’ modal logics. Journal of Symbolic Logic, 70:993–1021.CrossRefGoogle Scholar
  53. Gabelaia, D. and Sustretov, D. (2005). Modal correspondence for topological semantics. In Abstracts of Algebraic and Topological Methods in Non-Classical Logics II (Barcelona 2005), pages 80–81.Google Scholar
  54. Gärdenfors, P. (2000). Conceptual Spaces. MIT Press.Google Scholar
  55. Gerhardt, S. (2004). A Construction Method for Modal Logics of Space. Master’s thesis, ILLC, University of Amsterdam.Google Scholar
  56. Goldblatt, R. (1980). Diodorean modality in Minkowski space-time. Studia Logica, 39:219–236.CrossRefGoogle Scholar
  57. Goldblatt, R. (1987). Orthogonality and Spacetime Geometry. Springer-Verlag.Google Scholar
  58. Goranko, V. and Passy, S. (1992). Using the universal modality: Gains and questions. J. Logic Comput., 2(1):5–30.CrossRefGoogle Scholar
  59. Harel, D., Kozen, D., and Tiuryn, J. (2000). Dynamic Logic. Foundations of Computing Series. MIT Press, Cambridge, MA.Google Scholar
  60. Helly, E. (1923). Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresber. Deutsch. Math. Verein, 32:175–176.Google Scholar
  61. Hintikka, J. (1962). Knowledge and Belief. Cornell University Press.Google Scholar
  62. Hodkinson, I. and Reynolds, M. (2006). Temporal logic. In Handbook of Modal Logic. Google Scholar
  63. Kamp, J. (1968). Tense Logic and the Theory of Linear Order. PhD thesis, University of California, Los Angeles.Google Scholar
  64. Kelley, J. (1975). General Topology. Springer-Verlag, New York.Google Scholar
  65. Konev, B., Kontchakov, R., Wolter, F., and Zakharyaschev, M. (2004). On dynamic topological and metric logics. In Proceedings of AiML 2004, pages 182–196. King’s College Publications.Google Scholar
  66. Kuratowski, K. (1966). Topology. Vol. I. Academic Press, New York.Google Scholar
  67. Kuratowski, K. and Mostowski, A. (1976). Set Theory. North Holland, Amsterdam-New York-Oxford.Google Scholar
  68. Kurtonina, N. (1995). Frames and Labels. A Modal Analysis of Categorial Inference. PhD thesis, ILLC, Amsterdam.Google Scholar
  69. Kurtonina, N. and de Rijke, M. (1997). Bisimulations for temporal logic. Journal of Logic, Language and Information, 6:403–425.CrossRefGoogle Scholar
  70. Leitgeb, H. (2007). ‘A new analysis of quasianalysis’. Journal of Philosophical Logic. Google Scholar
  71. Lewis, D. (1969). Convention. Harvard University Press.Google Scholar
  72. Litak, T. (2004). Some notes on the superintuitionistic logic of chequered subsets of R. Bull. Sect. Logic Univ. Łódź, 33(2):81–86.Google Scholar
  73. Marx, M. (1995). Algebraic Relativization and Arrow Logic. PhD thesis, ILLC.Google Scholar
  74. Marx, M. and Venema, Y. (1997). Multi Dimensional Modal Logic. Kluwer.Google Scholar
  75. Matheron, G. (1967). Eléments pur Une Theorie des Milieux Poreaux. Masson.Google Scholar
  76. McKinsey, J. and Tarski, A. (1944). The algebra of topology. Annals of Mathematics, 45:141–191.CrossRefGoogle Scholar
  77. Mikulas, S. (1995). Taming Logics. PhD thesis, ILLC.Google Scholar
  78. Mints, G. (1998). A completeness proof for propositional S4 in Cantor Space. In E. Orlowska, editor, Logic at work : Essays dedicated to the memory of Helena Rasiowa. Physica-Verlag, Heidelberg.Google Scholar
  79. Moerdijk, I. (1982). Some topological spaces which are universal for intuitionistic predicate logic. Indagationes Mathematicae, 44(2):227–235.Google Scholar
  80. Pauly, M. (2001). Logic for Social Software. PhD thesis, ILLC, University of Amsterdam.Google Scholar
  81. Peleg, D. (1987). Concurrent dynamic logic. Journal of the ACM, 34(2): 450–479.CrossRefGoogle Scholar
  82. Pratt, V. (1999). Chu spaces. In School on Category Theory and Applications (Coimbra, 1999), volume 21 of Textos Mat. Sér. B, pages 39–100. Univ. Coimbra, Coimbra.Google Scholar
  83. Preparata, F. and Shamos, M. (1985). Computational Geometry: An Introduction. Springer-Verlag.Google Scholar
  84. Randell, D., Cui, Z., and Cohn, A. (1992). A spatial logic based on regions and connection. In Proc. of Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’92), pages 165–176. San Mateo.Google Scholar
  85. Randell, D., Witkowski, M., and Shanahan, M. (2001). From images to bodies: Modelling and exploiting occlusion and motion parallax. In Proc. of Int. Joint Conference on Artificial Intelligence (IJCAI-01). Google Scholar
  86. Rasiowa, H. and Sikorski, R. (1963). The Mathematics of Metamatematics. Panstwowe Wydawnictwo Naukowe.Google Scholar
  87. Segerberg, K. (1970). Modal logics with linear alternative relations. Theoria, 36:301–322.CrossRefGoogle Scholar
  88. Segerberg, K. (1973). Two-dimensional modal logic. J. Philos. Logic, 2(1): 77–96.CrossRefGoogle Scholar
  89. Serra, J. (1982). Image Analysis and Mathematical Morphology. Academic Press.Google Scholar
  90. Shehtman, V. (1983). Modal logics of domains on the real plane. Studia Logica, 42:63–80.CrossRefGoogle Scholar
  91. Shehtman, V. (1990). Derived sets in Euclidean spaces and modal logic. Technical Report X-1990-05, Univ. of Amsterdam.Google Scholar
  92. Shehtman, V. (1993). A logic with progressive tenses. In Diamonds and defaults (Amsterdam, 1990/1991), volume 229 of Synthese Lib., pages 255–285. Kluwer Acad. Publ., Dordrecht.Google Scholar
  93. Shehtman, V. (1999). ‘Everywhere’ and ‘here’. Journal of Applied Non-Classical Logics, 9(2–3):369–379.Google Scholar
  94. Shehtman, V. (2006). Derivational modal logics. Moscow Mathematical Journal. submitted.Google Scholar
  95. Sheremet, M., Tishkovsky, D., Wolter, F., and Zakharyaschev, M. (2006). Comparative similarity, tree automata, and diophantine equations. LPAR. to appear.Google Scholar
  96. Spaan, E. (1993). Complexity of Modal Logics. PhD thesis, University of Amsterdam, Institute for Logic, Language and Computation.Google Scholar
  97. Stebletsova, V. (2000). Algebras, Relations and Geometries. PhD thesis, University of Utrecht.Google Scholar
  98. Stebletsova, V. and Venema, Y. (2001). Undecidable theories of Lyndon algebras. J. Symbolic Logic, 66(1):207–224.CrossRefGoogle Scholar
  99. Steinsvold, C. (2005). Personal communication.Google Scholar
  100. Szczerba, L. and Tarski, A. (1965). Metamathematical properties of some affine geometries. In Bar-Hillel, Y., editor, Int. Congress for Logic, Methodolog, and Philosophy of Science, pages 166–178. North-Holland.Google Scholar
  101. Tarski, A. (1938). Der Aussagenkalkül und die Topologie. Fund. Math., 31: 103–134.Google Scholar
  102. Tarski, A. (1959). What is elementary geometry? In L. Henkin and P. Suppes and A. Tarski, editor, The Axiomatic Method, with Special Reference to Geometry ad Physics, pages 16–29. North-Holland.Google Scholar
  103. ten Cate, B., Gabelaia, D., and Sustretov, D. (2006). Modal languages for topology: expressivity and definability. Preprint.Google Scholar
  104. Troelstra, A. (1992). Lectures on Linear Logic. CSLI.Google Scholar
  105. van Benthem, J. (1983a). Correspondence theory. In Gabbay, D. and Guenthner, F., editors, Handbook of Philosophical Logic, volume II, pages 167–247. Reidel Publishing Company.Google Scholar
  106. van Benthem, J. (1983b). The Logic of Time, volume 156 of Synthese Library. Reidel, Dordrecht. [Revised and expanded, Kluwer, 1991].Google Scholar
  107. van Benthem, J. (1991a). Language in Action. Categories, Lambdas and Dynamic Logic. North-Holland, Amsterdam.Google Scholar
  108. van Benthem, J. (1991b). Logic and the flow of information. In Prawitz, D., Skyrms, B., and Westertal, D., editors, Proceedings of the 9th International Conference of Logic, Methodology and Philosophy of Science, pages 693–724. Elsevier.Google Scholar
  109. van Benthem, J. (1992). Logic as programming. Fundamenta Informaticae, 17(4):285–317.Google Scholar
  110. van Benthem, J. (1995). Temporal logic. In Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 4, Oxford Sci. Publ., pages 241–350. Oxford Univ. Press, New York.Google Scholar
  111. van Benthem, J. (1996). Exploring Logical Dynamics, volume 156. CSLI Publications, Stanford/Cambridge University Press.Google Scholar
  112. van Benthem, J. (1999). Temporal patterns and modal structure. Log. J. IGPL, 7(1):7–26. Special issue on Temporal Logic. A. Montanari, A. Policriti, and Y. Venema eds.CrossRefGoogle Scholar
  113. van Benthem, J. (2000a). Information transfer across Chu spaces. Log. J. IGPL, 8(6):719–731.CrossRefGoogle Scholar
  114. van Benthem, J. (2000b). Logical structures in mathematical morphology. Available at http://www.science.uva.nl/johan/MM-LL.ps.
  115. van Benthem, J. (2002). Invariance and definability: two faces of logical constants. In Sieg, W., Sommer, R., and Talcott, C., editors, Reflections on the Foundations of Mathematics. Essays in Honor of Sol Feferman, ASL Lecture Notes in Logic, pages 426–446. ASL.Google Scholar
  116. van Benthem, J., Bezhanishvili, G., Cate, B. ten, and Sarenac, D. (2005). Modal logics for products of topologies. Studia Logica, 84(3):369–392.CrossRefGoogle Scholar
  117. van Benthem, J., Bezhanishvili, G., and Gehrke, M. (2003). Euclidean hierarchy in modal logic. Studia Logica, 75(3):327–344.CrossRefGoogle Scholar
  118. van Benthem, J. and Blackburn, P. (2006). Basic modal model theory. In Handbook of Modal Logic. Google Scholar
  119. van Benthem, J. and Sarenac, D. (2004). The geometry of knowledge. In Aspects of universal logic, volume 17 of Travaux Log., pages 1–31. Univ. Neuchâtel, Neuchâtel.Google Scholar
  120. van Dalen, Dirk (2005). Mystic, Geometer, and Intuitionist. The Clarendon Press Oxford University Press, Oxford. The life of L. E. J. Brouwer, 1881–1966. Vol. 2, Hope and disillusion.Google Scholar
  121. Venema, Y. (1996). A crash course in arrow logic. In Marx, M., Masuch, M., and Pólos, L., editors, Arrow Logic and Multimodal Logic. CSLI.Google Scholar
  122. Venema, Y. (1999). Points, lines and diamonds: A two-sorted modal logic for projective planes. Journal of Logic and Computation, 9(5):601–621.CrossRefGoogle Scholar
  123. Venema, Y. (2007). Algebras and Co-algebras. In Blackburn, P., van Benthem, J. and Wolter, F., editors, Handbook of Model Logic, pages 331–426. Elsevier, Amsterdam.Google Scholar
  124. von Plato, J. (1995). The axioms of constructive geometry. Annals of Pure and Applied Logic, 76(2):169–200.CrossRefGoogle Scholar
  125. Wooldridge, M. (2002). An Introduction to Multiagent Systems. J. Wiley, New York.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Johan van Benthem
    • 1
  • Guram Bezhanishvili
    • 2
  1. 1.University of Amsterdam & Stanford UniversityThe Netherlands
  2. 2.New Mexico State UniversityUSA

Personalised recommendations