Heat Shock Proteins and the Resolution of Inflammation by Lymphocytes

  • Mark I. Hirsh
  • Wolfgang G. Junger
Part of the Heat Shock Proteins book series (HESP, volume 1)


Depletion of phagocytes that infiltrate host organs like the lungs reduces inflammatory damage to tissues. Understanding the mechanisms by which this process occurs could lead to new therapeutic approaches to limit the detrimental effects of inflammation. The lungs, gastrointestinal tract, and skin are particularly prone to infection. Specialized immune cells protect these organs from tissue damage by eliminating phagocytes from inflamed tissues by recognizing signals produced by the phagocytes. One such signal is heat shock proteins (HSP) expressed on the cell surface of phagocytes. These HSP closely resemble their microbial equivalents, and therefore phagocytes that are labeled by HSP are recognized as target cells. T lymphocytes bearing γδT cell receptor (TCR) elicit fast responses to invading pathogens. Since the γδTCR has limited germline-encoded diversity, HSP are an ideal target for recognition by these cells. γδT cells exert cytotoxic actions towards macrophages and neutrophils that express Hsp60 or Hsp70, respectively, on their cell surface. Through the recognition of HSP on the cell surface of inflamed cells, γδT cells eliminate phagocytes from inflammatory sites, thereby preventing host tissue damage


γδTCR T lymphocytes macrophages neutrophils inflammatory tissue damage immunoregulation 


  1. Abraham, E. (1997) Therapies for sepsis. Emerging therapies for sepsis and septic shock. West J Med 166, 195–200.PubMedGoogle Scholar
  2. Basu, S., Binder, R. J., Suto, R., Anderson, K. M. and Srivastava, P. K. (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12, 1539–46.PubMedCrossRefGoogle Scholar
  3. Beagley, K. W., Fujihashi, K., Black, C. A., Lagoo, A. S., Yamamoto, M., McGhee, J. R. and Kiyono, H. (1993) The Mycobacterium tuberculosis 71-kDa heat-shock protein induces proliferation and cytokine secretion by murine gut intraepithelial lymphocytes. Eur J Immunol 23, 2049–52.PubMedCrossRefGoogle Scholar
  4. Belles, C., Kuhl, A., Nosheny, R. and Carding, S. R. (1999) Plasma membrane expression of heat shock protein 60 in vivo in response to infection. Infect Immun 67, 4191–200.PubMedGoogle Scholar
  5. Bellingan, G. J., Caldwell, H., Howie, S. E., Dransfield, I. and Haslett, C. (1996) In vivo fate of the inflammatory macrophage during the resolution of inflammation: inflammatory macrophages do not die locally, but emigrate to the draining lymph nodes. J Immunol 157, 2577–85.PubMedGoogle Scholar
  6. Bone, R. C. (1991) The pathogenesis of sepsis. Ann Intern Med 115, 457–69.PubMedGoogle Scholar
  7. Born, W., Cady, C., Jones-Carson, J., Mukasa, A., Lahn, M. and O’Brien, R. (1999) Immunoregulatory functions of gamma delta T cells. Adv Immunol 71, 77–144.PubMedGoogle Scholar
  8. Cai, J. L. and Tucker, P. W. (2001) Gamma-delta T cells: immunoregulatory functions and immunoprotection. Chem Immunol 79, 99–138.PubMedGoogle Scholar
  9. Calandra, T. and Heumann, D. (2000) Inhibitory cytokines. Springer, Berlin.Google Scholar
  10. Capsoni, F., Minonzio, F., Ongari, A. M., Carbonelli, V., Galli, A. and Zanussi, C. (1997) Interleukin-10 down-regulates oxidative metabolism and antibody-dependent cellular cytotoxicity of human neutrophils. Scand J Immunol 45, 269–75.PubMedCrossRefGoogle Scholar
  11. Carding, S. R. and Egan, P. J. (2000) The importance of gamma delta T cells in the resolution of pathogen-induced inflammatory immune responses. Immunol Rev 173, 98–108.PubMedCrossRefGoogle Scholar
  12. Cox, S., Lawrence, J. and Sheehan, D. (1994) Single ion gas chromatographic/mass spectroscopic quantitative analysis of environmental CO2 in agoraphobic environments. Anxiety 1, 275–7.PubMedGoogle Scholar
  13. D’Souza, C. D., Cooper, A. M., Frank, A. A., Mazzaccaro, R. J., Bloom, B. R. and Orme, I. M. (1997) An anti-inflammatory role for gamma delta T lymphocytes in acquired immunity to Mycobacterium tuberculosis. J Immunol 158, 1217–21.PubMedGoogle Scholar
  14. Dastoor, Z. and Dreyer, J. (2000) Nuclear translocation and aggregate formation of heat shock cognate protein 70 (Hsc70) in oxidative stress and apoptosis. J Cell Sci 113 (Pt 16), 2845–54.PubMedGoogle Scholar
  15. DeNagel, D. C. and Pierce, S. K. (1992) A case for chaperones in antigen processing. Immunol Today 13, 86–9.PubMedCrossRefGoogle Scholar
  16. Di Cesare, S., Poccia, F., Mastino, A. and Colizzi, V. (1992) Surface expressed heat-shock proteins by stressed or human immunodeficiency virus (HIV)-infected lymphoid cells represent the target for antibody-dependent cellular cytotoxicity. Immunology 76, 341–3.PubMedGoogle Scholar
  17. Downey, G. P., Dong, Q., Kruger, J., Dedhar, S. and Cherapanov, V. (1999) Regulation of neutrophil activation in acute lung injury. Chest 116, 46S–54S.PubMedCrossRefGoogle Scholar
  18. Dyugovskaya, L., Hirsh, M. and Ginsburg, H. (2003) Phenotypic profile and functional characterization of rat lymph node-derived gammadelta T cells: implication in the immune response to cytomegalovirus. Immunology 108, 129–36.PubMedCrossRefGoogle Scholar
  19. Egan, P. J. and Carding, S. R. (2000) Downmodulation of the inflammatory response to bacterial infection by gammadelta T cells cytotoxic for activated macrophages. J Exp Med 191, 2145–58.PubMedCrossRefGoogle Scholar
  20. Erkeller-Yuksel, F. M., Isenberg, D. A., Dhillon, V. B., Latchman, D. S. and Lydyard, P. M. (1992) Surface expression of heat shock protein 90 by blood mononuclear cells from patients with systemic lupus erythematosus. J Autoimmun 5, 803–14.PubMedCrossRefGoogle Scholar
  21. Fahrer, A. M., Konigshofer, Y., Kerr, E. M., Ghandour, G., Mack, D. H., Davis, M. M. and Chien, Y. H. (2001) Attributes of gammadelta intraepithelial lymphocytes as suggested by their transcriptional profile. Proc Natl Acad Sci U S A 98, 10261–6.PubMedCrossRefGoogle Scholar
  22. Faulds, G. B., Isenberg, D. A. and Latchman, D. S. (1994) The tissue specific elevation in synthesis of the 90 kDa heat shock protein precedes the onset of disease in lupus prone MRL/lpr mice. J Rheumatol 21, 234–8.PubMedGoogle Scholar
  23. Ferrarini, M., Heltai, S., Zocchi, M. R. and Rugarli, C. (1992) Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer 51, 613–9.PubMedCrossRefGoogle Scholar
  24. Fisch, P., Malkovsky, M., Kovats, S., Sturm, E., Braakman, E., Klein, B. S., Voss, S. D., Morrissey, L. W., DeMars, R., Welch, W. J. and et al. (1990) Recognition by human V gamma 9/V delta 2 T cells of a GroEL homolog on Daudi Burkitt’s lymphoma cells. Science 250, 1269–73.PubMedCrossRefGoogle Scholar
  25. Gao, Y. L., Brosnan, C. F. and Raine, C. S. (1995) Experimental autoimmune encephalomyelitis. Qualitative and semiquantitative differences in heat shock protein 60 expression in the central nervous system. J Immunol 154, 3548–56.PubMedGoogle Scholar
  26. Gastpar, R., Gross, C., Rossbacher, L., Ellwart, J., Riegger, J. and Multhoff, G. (2004) The cell surface-localized heat shock protein 70 epitope TKD induces migration and cytolytic activity selectively in human NK cells. J Immunol 172, 972–80.PubMedGoogle Scholar
  27. Griffin, J. P., Harshan, K. V., Born, W. K. and Orme, I. M. (1991) Kinetics of accumulation of gamma delta receptor-bearing T lymphocytes in mice infected with live mycobacteria. Infect Immun 59, 4263–5.PubMedGoogle Scholar
  28. Groh, V., Steinle, A., Bauer, S. and Spies, T. (1998) Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 279, 1737–40.PubMedCrossRefGoogle Scholar
  29. Hantschel, M., Pfister, K., Jordan, A., Scholz, R., Andreesen, R., Schmitz, G., Schmetzer, H., Hiddemann, W. and Multhoff, G. (2000) Hsp70 plasma membrane expression on primary tumor biopsy material and bone marrow of leukemic patients. Cell Stress Chaperones 5, 438–42.PubMedCrossRefGoogle Scholar
  30. Hartl, F. U. (1996) Molecular chaperones in cellular protein folding. Nature 381, 571–9.PubMedCrossRefGoogle Scholar
  31. Hashiguchi, N., Ogura, H., Tanaka, H., Koh, T., Nakamori, Y., Noborio, M., Shiozaki, T., Nishino, M., Kuwagata, Y., Shimazu, T. and Sugimoto, H. (2001) Enhanced expression of heat shock proteins in activated polymorphonuclear leukocytes in patients with sepsis. J Trauma 51, 1104–9.PubMedCrossRefGoogle Scholar
  32. Haslett, C. (1995) Introduction–the paradox of inflammation. Semin Cell Biol 6, 315–6.PubMedCrossRefGoogle Scholar
  33. Haslett, C. (1999) Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am J Respir Crit Care Med 160, S5–11.PubMedGoogle Scholar
  34. Haslett, C., Donnelly, S. and Hirani, N. (2000) Neutrophils and acute lung injury. Springer, Berlin.Google Scholar
  35. Hayday, A. C. (2000) [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 18, 975–1026.PubMedCrossRefGoogle Scholar
  36. Hightower, L. E. and Guidon, P. T., Jr. (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. Journal of Cellular Physiology 138, 257–66.PubMedCrossRefGoogle Scholar
  37. Hiromatsu, K., Yoshikai, Y., Matsuzaki, G., Ohga, S., Muramori, K., Matsumoto, K., Bluestone, J. A. and Nomoto, K. (1992) A protective role of gamma/delta T cells in primary infection with Listeria monocytogenes in mice. J Exp Med 175, 49–56.PubMedCrossRefGoogle Scholar
  38. Hirsh, M., Carmel, J., Kaplan, V., Livne, E. and Krausz, M. M. (2004a) Activity of lung neutrophils and matrix metalloproteinases in cyclophosphamide-treated mice with experimental sepsis. Int J Exp Pathol 85, 147–57.CrossRefGoogle Scholar
  39. Hirsh, M., Dyugovskaya, L., Kaplan, V. and Krausz, M. M. (2004b) Response of lung gammadelta T cells to experimental sepsis in mice. Immunology 112, 153–60.CrossRefGoogle Scholar
  40. Hirsh, M. I., Hashiguchi, N., Chen, Y., Yip, L. and Junger, W. G. (2006) Surface expression of HSP72 by LPS-stimulated neutrophils facilitates gammadeltaT cell-mediated killing. European Journal of Immunology 36, 712–21.PubMedCrossRefGoogle Scholar
  41. Ishiyama, T., Koike, M., Akimoto, Y., Fukuchi, K., Watanabe, K., Yoshida, M., Wakabayashi, Y. and Tsuruoka, N. (1996) Heat shock-enhanced T cell apoptosis with heat shock protein 70 on T cell surface in multicentric Castleman’s disease. Clin Exp Immunol 106, 351–6.PubMedCrossRefGoogle Scholar
  42. Jaattela, M., Wissing, D., Bauer, P. A. and Li, G. C. (1992) Major heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity. Embo J 11, 3507–12.PubMedGoogle Scholar
  43. Janeway, C. A., Jr. (1992) The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13, 11–6.PubMedCrossRefGoogle Scholar
  44. Kaufmann, S. H. E. and Schoel, B. (1994) Heat shock proteins as antigens in immunity against infection and self. In The Biology of Heat Shock Proteins and Molecular Chaperones, Morimoto, R. I., Tissieres, A.and Georgopoulos, C. eds, pp. 495-531. Cold Spring Harbor Laboratory Press, Plainview.Google Scholar
  45. Kaur, I., Voss, S. D., Gupta, R. S., Schell, K., Fisch, P. and Sondel, P. M. (1993) Human peripheral gamma delta T cells recognize hsp60 molecules on Daudi Burkitt’s lymphoma cells. J Immunol 150, 2046–55.PubMedGoogle Scholar
  46. Khelef, N., Zychlinsky, A. and Guiso, N. (1993) Bordetella pertussis induces apoptosis in macrophages: role of adenylate cyclase-hemolysin. Infect Immun 61, 4064–71.PubMedGoogle Scholar
  47. Kim, H. D., Kang, H. S., Rimbach, G. and Park, Y. C. (1999) Heat shock and 5-azacytidine inhibit nitric oxide synthesis and tumor necrosis factor-alpha secretion in activated macrophages. Antioxid Redox Signal 1, 297–304.PubMedGoogle Scholar
  48. Kim, H. T., Nelson, E. L., Clayberger, C., Sanjanwala, M., Sklar, J. and Krensky, A. M. (1995) Gamma delta T cell recognition of tumor Ig peptide. J Immunol 154, 1614–23.PubMedGoogle Scholar
  49. Kimura, Y., Tomida, S., Matsumoto, Y., Hiromatsu, K. and Yoshikai, Y. (1996) Evidence for the early recruitment of T-cell receptor gamma delta+ T cells during rat listeriosis. Immunology 87, 21–8.PubMedGoogle Scholar
  50. Kimura, Y., Yamada, K., Sakai, T., Mishima, K., Nishimura, H., Matsumoto, Y., Singh, M. and Yoshikai, Y. (1998) The regulatory role of heat shock protein 70-reactive CD4+ T cells during rat listeriosis. Int Immunol 10, 117–30.PubMedCrossRefGoogle Scholar
  51. Kindas-Mugge, I., Hammerle, A. H., Frohlich, I., Oismuller, C., Micksche, M. and Trautinger, F. (1993) Granulocytes of critically ill patients spontaneously express the 72 kD heat shock protein. Circ Shock 39, 247–52.PubMedGoogle Scholar
  52. Kos, F. J. and Engleman, E. G. (1996) Immune regulation: a critical link between NK cells and CTLs. Immunol Today 17, 174–6.PubMedCrossRefGoogle Scholar
  53. Laad, A. D., Thomas, M. L., Fakih, A. R. and Chiplunkar, S. V. (1999) Human gamma delta T cells recognize heat shock protein-60 on oral tumor cells. Int J Cancer 80, 709–14.PubMedCrossRefGoogle Scholar
  54. Lanier, L. L. (1997) Natural killer cells: from no receptors to too many. Immunity 6, 371–8.PubMedCrossRefGoogle Scholar
  55. Latchman, D. S. and Isenberg, D. A. (1994) The role of hsp90 in SLE. Autoimmunity 19, 211–8.PubMedGoogle Scholar
  56. Lee, A., Whyte, M. K. and Haslett, C. (1993) Inhibition of apoptosis and prolongation of neutrophil functional longevity by inflammatory mediators. J Leukoc Biol 54, 283–8.PubMedGoogle Scholar
  57. Li, H., Lebedeva, M. I., Llera, A. S., Fields, B. A., Brenner, M. B. and Mariuzza, R. A. (1998) Structure of the Vdelta domain of a human gammadelta T-cell antigen receptor. Nature 391, 502–6.PubMedCrossRefGoogle Scholar
  58. Mangan, D. F. and Wahl, S. M. (1991) Differential regulation of human monocyte programmed cell death (apoptosis) by chemotactic factors and pro-inflammatory cytokines. J Immunol 147, 3408–12.PubMedGoogle Scholar
  59. Matsumoto, K., Schleimer, R. P., Saito, H., Iikura, Y. and Bochner, B. S. (1995) Induction of apoptosis in human eosinophils by anti-Fas antibody treatment in vitro. Blood 86, 1437–43.PubMedGoogle Scholar
  60. Melley, D. D., Evans, T. W. and Quinlan, G. J. (2005) Redox regulation of neutrophil apoptosis and the systemic inflammatory response syndrome. Clin Sci (Lond) 108, 413–24.CrossRefGoogle Scholar
  61. Michaelsson, J., Teixeira de Matos, C., Achour, A., Lanier, L. L., Karre, K. and Soderstrom, K. (2002) A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition. J Exp Med 196, 1403–14.PubMedCrossRefGoogle Scholar
  62. Multhoff, G., Botzler, C., Jennen, L., Schmidt, J., Ellwart, J. and Issels, R. (1997) Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. J. Immunol. 158, 4341–50.PubMedGoogle Scholar
  63. Multhoff, G. and Hightower, L. E. (1996) Cell surface expression of heat shock proteins and the immune response. Cell Stress Chaperones 1, 167–76.PubMedCrossRefGoogle Scholar
  64. Murray, J., Barbara, J. A., Dunkley, S. A., Lopez, A. F., Van Ostade, X., Condliffe, A. M., Dransfield, I., Haslett, C. and Chilvers, E. R. (1997) Regulation of neutrophil apoptosis by tumor necrosis factor-alpha: requirement for TNFR55 and TNFR75 for induction of apoptosis in vitro. Blood 90, 2772–83.PubMedGoogle Scholar
  65. Nagata, S. (1997) Apoptosis by death factor. Cell 88, 355–65.PubMedCrossRefGoogle Scholar
  66. O’Brien, R. L., Fu, Y. X., Cranfill, R., Dallas, A., Ellis, C., Reardon, C., Lang, J., Carding, S. R., Kubo, R. and Born, W. (1992) Heat shock protein Hsp60-reactive gamma delta cells: a large, diversified T-lymphocyte subset with highly focused specificity. Proc Natl Acad Sci U S A 89, 4348–52.PubMedCrossRefGoogle Scholar
  67. Parsell, D. A. and Lindquist, S. (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27, 437–96.PubMedCrossRefGoogle Scholar
  68. Poccia, F., Piselli, P., Vendetti, S., Bach, S., Amendola, A., Placido, R. and Colizzi, V. (1996) Heat-shock protein expression on the membrane of T cells undergoing apoptosis. Immunology 88, 6–12.PubMedCrossRefGoogle Scholar
  69. Poccia, F., Placido, R. and Mancina, G. (1993) Heat shock protein expression in HIV-1 infection. Marcel Dekker, New York.Google Scholar
  70. Porcelli, S., Brenner, M. B., Greenstein, J. L., Balk, S. P., Terhorst, C. and Bleicher, P. A. (1989) Recognition of cluster of differentiation 1 antigens by human CD4-CD8-cytolytic T lymphocytes. Nature 341, 447–50.PubMedCrossRefGoogle Scholar
  71. Pratt, W. B. and Toft, D. O. (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18, 306–60.PubMedCrossRefGoogle Scholar
  72. Radford, N. B., Fina, M., Benjamin, I. J., Moreadith, R. W., Graves, K. H., Zhao, P., Gavva, S., Wiethoff, A., Sherry, A. D., Malloy, C. R. and Williams, R. S. (1996) Cardioprotective effects of 70-kDa heat shock protein in transgenic mice. Proc Natl Acad Sci U S A 93, 2339–42.PubMedCrossRefGoogle Scholar
  73. Rangel-Frausto, M. S., Pittet, D., Costigan, M., Hwang, T., Davis, C. S. and Wenzel, R. P. (1995) The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. Jama 273, 117–23.PubMedCrossRefGoogle Scholar
  74. Ripley, C. R., Fant, J. and Bienkowski, R. S. (1993) Brefeldin A inhibits degradation as well as production and secretion of collagen in human lung fibroblasts. J Biol Chem 268, 3677–82.PubMedGoogle Scholar
  75. Roigas, J., Wallen, E. S., Loening, S. A. and Moseley, P. L. (1998) Heat shock protein (HSP72) surface expression enhances the lysis of a human renal cell carcinoma by IL-2 stimulated NK cells. Adv Exp Med Biol 451, 225–9.PubMedGoogle Scholar
  76. Rossi, A. G., Cousin, J. M., Dransfield, I., Lawson, M. F., Chilvers, E. R. and Haslett, C. (1995) Agents that elevate cAMP inhibit human neutrophil apoptosis. Biochem Biophys Res Commun 217, 892–9.PubMedCrossRefGoogle Scholar
  77. Saunders, B. M., Frank, A. A., Cooper, A. M. and Orme, I. M. (1998) Role of gamma delta T cells in immunopathology of pulmonary Mycobacterium avium infection in mice. Infect Immun 66, 5508–14.PubMedGoogle Scholar
  78. Savill, J. (1997) Apoptosis in resolution of inflammation. J Leukoc Biol 61, 375–80.PubMedGoogle Scholar
  79. Schaible, U. E., Collins, H. L. and Kaufmann, S. H. (1999) Confrontation between intracellular bacteria and the immune system. Adv Immunol 71, 267–377.PubMedGoogle Scholar
  80. Schild, H., Mavaddat, N., Litzenberger, C., Ehrich, E. W., Davis, M. M., Bluestone, J. A., Matis, L., Draper, R. K. and Chien, Y. H. (1994) The nature of major histocompatibility complex recognition by gamma delta T cells. Cell 76, 29–37.PubMedCrossRefGoogle Scholar
  81. Schlesinger, M. J. (1990) Heat shock proteins. J Biol Chem 265, 12111–4.PubMedGoogle Scholar
  82. Shinnick, T. M. (1991) Heat shock proteins as antigens of bacterial and parasitic pathogens. Curr Top Microbiol Immunol 167, 145–60.PubMedGoogle Scholar
  83. Soloski, M. J., DeCloux, A., Aldrich, C. J. and Forman, J. (1995) Structural and functional characteristics of the class IB molecule, Qa-1. Immunol Rev 147, 67–89.PubMedCrossRefGoogle Scholar
  84. Su, C. Y., Chong, K. Y., Owen, O. E., Dillmann, W. H., Chang, C. and Lai, C. C. (1998) Constitutive and inducible hsp70s are involved in oxidative resistance evoked by heat shock or ethanol. J Mol Cell Cardiol 30, 587–98.PubMedCrossRefGoogle Scholar
  85. Tam, S., King, D. P. and Beaman, B. L. (2001) Increase of gammadelta T lymphocytes in murine lungs occurs during recovery from pulmonary infection by Nocardia asteroides. Infect Immun 69, 6165–71.PubMedCrossRefGoogle Scholar
  86. Torok, Z., Horvath, I., Goloubinoff, P., Kovacs, E., Glatz, A., Balogh, G. and Vigh, L. (1997) Evidence for a lipochaperonin: association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions. Proc Natl Acad Sci U S A 94, 2192–7.PubMedCrossRefGoogle Scholar
  87. Tsuji, M., Mombaerts, P., Lefrancois, L., Nussenzweig, R. S., Zavala, F. and Tonegawa, S. (1994) Gamma delta T cells contribute to immunity against the liver stages of malaria in alpha beta T-cell-deficient mice. Proc Natl Acad Sci U S A 91, 345–9.PubMedCrossRefGoogle Scholar
  88. Vanbuskirk, A., Crump, B. L., Margoliash, E. and Pierce, S. K. (1989) A peptide binding protein having a role in antigen presentation is a member of the HSP70 heat shock family. J Exp Med 170, 1799–809.PubMedCrossRefGoogle Scholar
  89. Wand-Wurttenberger, A., Schoel, B., Ivanyi, J. and Kaufmann, S. H. (1991) Surface expression by mononuclear phagocytes of an epitope shared with mycobacterial heat shock protein 60. Eur J Immunol 21, 1089–92.PubMedCrossRefGoogle Scholar
  90. Wang, L., Kamath, A., Das, H., Li, L. and Bukowski, J. F. (2001) Antibacterial effect of human V gamma 2V delta 2 T cells in vivo. J Clin Invest 108, 1349–57.PubMedCrossRefGoogle Scholar
  91. Weintraub, B. C., Jackson, M. R. and Hedrick, S. M. (1994) Gamma delta T cells can recognize nonclassical MHC in the absence of conventional antigenic peptides. J Immunol 153, 3051–8.PubMedGoogle Scholar
  92. Whyte, M. K., Hardwick, S. J., Meagher, L. C., Savill, J. S. and Haslett, C. (1993) Transient elevations of cytosolic free calcium retard subsequent apoptosis in neutrophils in vitro. J Clin Invest 92, 446–55.PubMedCrossRefGoogle Scholar
  93. Windsor, A. C., Mullen, P. G., Fowler, A. A. and Sugerman, H. J. (1993) Role of the neutrophil in adult respiratory distress syndrome. Br J Surg 80, 10–7.PubMedCrossRefGoogle Scholar
  94. Xu, Q. and Wick, G. (1993) Surface expression of heat shock protein 60 on endothelial cells. Immunobiology, 131–132.Google Scholar
  95. Zugel, U. and Kaufmann, S. H. (1999) Role of heat shock proteins in protection from and pathogenesis of infectious diseases. Clin Microbiol Rev 12, 19–39.PubMedGoogle Scholar
  96. Zwierska, I., Walker, R. D., Choksy, S. A., Male, J. S., Pockley, A. G. and Saxton, J. M. (2006) Relative tolerance to upper- and lower-limb aerobic exercise in patients with peripheral arterial disease. European Journal of Vascular and Endovascular Surgery 31, 157–63.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Mark I. Hirsh
    • 1
    • 2
  • Wolfgang G. Junger
    • 1
  1. 1.Surgical Immunology Research Laboratory, Department of SurgeryUniversity of California San DiegoSan DiegoUSA
  2. 2.Department of Surgery A and the Laboratory for Shock and Trauma ResearchRambam Medical CenterHaifaIsrael

Personalised recommendations