Participatory Breeding For Drought and Salt Tolerant Crops

  • P.A. Hollington
  • Katherine A. Steele


Although enormous effort has been put into conventional breeding programmes for both drought and salt tolerance, there has been little progress in producing varieties that are adopted by farmers in their fields. This is largely due to the lack of consideration given to the specific needs of farmers in droughted and salt-affected environments, in particular in terms of non-yield post-harvest traits. We discuss with examples the advantages and disadvantages of participatory variety selection (PVS) and participatory plant breeding (PPB) in their various forms, as well as the use of the term client-oriented breeding to describe the process of involving the end-users of the breeding programme. Methods for the analysis of participatory trials, and practical considerations for their management, are presented. We also show how both participatory and molecular approaches can be combined into an integrated, client-oriented breeding programme


participatory variety selection participatory plant breeding PVS PPB COB 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdus Salam, Hollington, P. A., Gorham, J., Wyn Jones, R. G., and Gliddon, C., 1999. Physiological genetics of salt tolerance in wheat (Triticum aestivum L.): Performance of wheat varieties, inbred lines and reciprocal F1 hybrids under saline conditions. J. Agron. Crop Sci. 183: 145–156.CrossRefGoogle Scholar
  2. Allan, E. and Rowlands, J., 2001. Mixed models and multilevel data structures in agriculture. Statistical Services Centre, University of Reading, UK.Google Scholar
  3. Araus, J L., Bort, J., Steduto, P., Villegas, D., and Royo, C., 2003. Breeding cereals for Mediterranean conditions: Ecophysiological clues for biotechnology application. Ann. Appl. Biol. 142: 129–141Google Scholar
  4. Araus, J. L., Slafer, G. A., Reynolds, M. P., and Royo, C., 2002. Plant breeding and drought in C3 cereals : what to breed for. Ann. Bot. 89: 925–940.PubMedCrossRefGoogle Scholar
  5. Baidu-Forson, J., 1997. On-station participatory varietal evaluation: a strategy for client-oriented breeding. Exp. Agric. 33: 43–50.CrossRefGoogle Scholar
  6. Bajracharya, J., Steele, K. A., Jarvis, D. I., Sthapit, B. R., and Witcombe, J. R., 2006. Rice landrace diversity in Nepal: variability of agro-morphological traits and SSR markers in landraces from a high-altitude site. Fld. Crops Res. 95: 327–335CrossRefGoogle Scholar
  7. Barrett-Lennard, E. G., 2003. The interaction between waterlogging and salinity in higher plants: causes, consequences and implications. Plant Soil 253: 35–54CrossRefGoogle Scholar
  8. Barrett-Lennard, E. G., van Ratingen, P., and Mathie, M. H., 1999. The developing pattern of damage in wheat (Triticum aestivum L.) due to the combined stresses of salinity and hypoxia: experiments under controlled conditions suggest a methodology for plant selection. Aust. J. Agric. Res. 50: 129–136.CrossRefGoogle Scholar
  9. Bellon, M. R. and Reeves, J., 2002. Quantitative Analysis of Data from Participatory Methods in Plant Breeding. Mexico, D.F. CIMMYT.Google Scholar
  10. Bennett, J., 2003. Opportunities for increasing water productivity of CGIAR crops through plant breeding and molecular biology, in Water Productivity in Agriculture: Limits and Opportunities for Improvement, J.W. Kijne, R. Barker and D. Molden, eds., Wallingford, CABI International, pp 103–126Google Scholar
  11. Bennett, J. and Khush, G. S., 2003. Enhancing salt tolerance in crops through molecular breeding: a new strategy. J. Crop Prod. 7: 11–65CrossRefGoogle Scholar
  12. Biggs, S. and Gauchan, D., 2001. Resource-poor farmer participation in research: a synthesis of experiences from nine national agricultural research systems. Special series on the Organisation and Management of On-Farm Client-Oriented Research (OFCOR). OFCOR-Comparative Study Paper 3. The Hague: International Service for National Agricultural Research (ISNAR).Google Scholar
  13. Ceccarelli, S., 1994. Specific adaptation and breeding for marginal conditions. Euphytica 77: 205–219CrossRefGoogle Scholar
  14. Ceccarelli, S. and Grando, S., 1996. Drought as a challenge for the plant breeder. Plant Growth Reg. 20: 149–155.CrossRefGoogle Scholar
  15. Ceccarelli, S. and Grando, S., 1999. Decentralised participatory plant breeding. ILEIA Newsletter 15: 3/4 , 36–37.Google Scholar
  16. Ceccarelli, S., Erskine, W., Hamblin, J., and Grando, S., 1994. Genotype by environment interaction and international breeding programmes. Exp. Agric. 30: 177–187Google Scholar
  17. Ceccarelli, S., Grando, S., Bailey, E., Amri, A., El-Felah, M., Nassif, F., Rezgui, S., and Yahyaoui, A., 2001. Farmer participation in barley breeding in Syria, Morocco and Tunisia. Euphytica 122: 521–536CrossRefGoogle Scholar
  18. Ceccarelli, S, Grando, S., and Impiglia, A., 1998. Choice of selection strategy in breeding barley for stress environments. Euphytica 103: 307–318.CrossRefGoogle Scholar
  19. Ceccarelli, S., Grando, S., Martini, M., and Lutf, A., 2002. Participatory barley and lentil breeding in Yemen. ICARDA Caravan 16: 18–19Google Scholar
  20. Ceccarelli, S., Grando, S., Singh, M., Michael, M., Shikho, A., Al-Issa, M., Al-Saleh, A., Kaleonjy, G., Al-Ghanem, S. M., Al-Hasan, A. L., Dalla, H., Basha, S., and Basha, T., 2003. A methodological study on participatory barley breeding. II. Response to selection. Euphytica 133: 185–200.CrossRefGoogle Scholar
  21. Ceccarelli, S., Grando, S., Tutwiler, R., Baha, J., Martini, A. M., Salahieh, H., Goodchild, A., and Michael, M., 2000. A methodological study on participatory barley breeding. I. Selection phase. Euphytica 111: 91–104.CrossRefGoogle Scholar
  22. Chambers, R., 1989. Institutions and practical change. Reversals, institutions and change, in Farmer First, R. Chambers, A. Pacey and L. A. Thrupp, eds., Overseas Development Institute, London, pp 181–195Google Scholar
  23. Coe, R., 2002a. Analyzing data from participatory on-farm trials, in Quantitative Analysis of Data from Participatory Methods in Plant Breeding, M. R. Bellon and J. Reeves, eds., CIMMYT, Mexico, DF, pp 18–35Google Scholar
  24. Coe, R., 2002b. Analyzing ranking and rating data from participatory on-farm trials, in Quantitative Analysis of Data from Participatory Methods in Plant Breeding, M. R. Bellon and J. Reeves, eds., CIMMYT, Mexico, DF, pp 44–65Google Scholar
  25. Evans, L. T. 1998. Feeding the Ten Billion: Plants and Population Growth, Cambridge University Press, Cambridge.Google Scholar
  26. FAO. Food and Agriculture Organisation of the United Nations. 2002. Agriculture: Towards 2015 / 2030. Interim report, Economic and Social Department. FAO, Rome, Italy (3 August 2006) Scholar
  27. FAO. Food and Agriculture Organisation of the United Nations. 2003. Agriculture, food and water. A contribution to the World Water Development Report. Rome, Italy. FAO Land and Water Development Division (31 August, 2006): Scholar
  28. Fischer, G., Sham, M., and van Veltuizen, H., 2002. Climate Change and Agricultural Variability. Laxemburg, Austria: IIASA.Google Scholar
  29. Flowers, T. J., 2004. Improving crop salt tolerance. J. Exp. Bot. 55: 307–319PubMedCrossRefGoogle Scholar
  30. Flowers, T. J., and Yeo, A. R., 1995. Breeding for salinity resistance in crop plants: where next? Aust. J. Plant Physiol. 22: 875–884CrossRefGoogle Scholar
  31. Gregorio, G. B., and Cabuslay, G. S., 2005 Breeding for abiotic stress tolerance in rice, in Abiotic Stresses: Plant Resistance through Breeding and Molecular Approaches, M. Ashraf and P. J. C. Harris, eds., Food Products Press, The Haworth Press Inc, pp. 513–544Google Scholar
  32. Gregorio, G. B., Senadhira, D., Mendoza, R. D., Manigbas, N. L., Roxas, J. P. and Guerta, C. Q. 2002. Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Fld. Crops Res. 76: 91–101CrossRefGoogle Scholar
  33. Hillel, D., and Rosenzweig, C., 2002. Desertification in relation to climate variability and change. Adv. Agron. 77: 1–38Google Scholar
  34. Hobbs, P .R., and Gupta, R. K., 2003. Rice-wheat cropping systems in the Indo-Gangetic plains: issues of water productivity in relation to new resource-conserving technologies, in Water Productivity in Agriculture: Limits and Opportunities for Improvement, J. W. Kijne, R. Barker, and D. Molden, eds., CABI International, Wallingford, UK. ISBN 0 85199 669 8, pp. 239–253Google Scholar
  35. Hollington, P. A., 2000. Technological breakthroughs in screening/breeding wheat varieties for salt tolerance. Invited paper presented at National Conference on Salinity Management in Agriculture, S. K. Gupta, S. K. Sharma and N. K. Tyagi, eds., CSSRI Karnal, India, December 2 - 5, 1998. Karnal, India: Central Soil Salinity Research Institute, pp 273–289.Google Scholar
  36. Hollington, P. A., Royo, A., Miller, T. E, Quarrie, S. A., Mahmood, A., and Aragüés, R., 1994. The use of doubled haploid breeding techniques to develop wheat varieties for saline areas. Proc 3rd Congr, Eur Soc Agron, pp 156–157Google Scholar
  37. IRRI 2006a (July 10, 2006): Scholar
  38. IRRI 2006b (July 10, 2006); Scholar
  39. Isla, R., Aragüés, R., and Royo, A. (2003). Spatial variability of salt-affected soils in the middle Ebro valley (Spain) and implications in plant breeding for increased productivity. Euphytica 134: 325–334CrossRefGoogle Scholar
  40. Johnson, J. J., Alldredge, J. R., Ullrich, S. E., and Dangi, O., 1992. Replacement of replications with additional locations for grain sorghum cultivar evaluation. Crop Sci..32: 43–46.CrossRefGoogle Scholar
  41. Joshi, A., and Witcombe, J. R., 1996. Farmer participatory crop improvement II: Participatory varietal selection in India. Exp. Agric. 32: 461–477Google Scholar
  42. Joshi, K. D., and Witcombe, J. R., 2002. Participatory varietal selection in rice in Nepal - a comparison of two methods assessed by varietal adoption. Euphytica 127: 445–458CrossRefGoogle Scholar
  43. Joshi, K. D., and Witcombe, J. R., 2003. The impact of participatory plant breeding on landrace diversity: a case study for high-altitude rice in Nepal. Euphytica 134: 117–125Google Scholar
  44. Joshi, K. D., Musa, A. M., Johansen, C., Gyawali, S., Harris, D., and Witcombe, J. R., 2006. Highly client-oriented breeding, using local preferences and selection, produces widely adapted rice varieties. Fld. Crops Res. (in press)Google Scholar
  45. Joshi, K. D., Subedi, M., Rana, R. B., Kadayat, K. B., and Sthapit, B. R., 1997. Enhancing on-farm varietal diversity through participatory varietal selection: a case study for Chaite rice in Nepal. Exp. Agric. 33: 335–344CrossRefGoogle Scholar
  46. Kafawin, O., Saoub, H., Ceccarelli, S., Shakhatreh, Y., Yasin, A., Grando, S. , Bwaliez, A. R., and Khazaleh, A., 2005 Participatory barley breeding for improving production in stress environments. Dirasat. Agricultural Sciences 32: 57–63.Google Scholar
  47. Maas, E. V., 1990. Crop salt tolerance. In: Tanji, K.K. (ed) Agricultural Salinity Assessment and Management. ACSE Manuals and reports on engineering practice No. 71. New York, ASCE. ISBN 0-87262-762-4, pp. 262–304Google Scholar
  48. Mangione, D., Senni, S., Puccioni, M., Grando, S., and Ceccarelli, S., 2006. The cost of participatory plant breeding. Euphytica. In press.Google Scholar
  49. Mannion, A. M., 1995. Biotechnology and environmental quality. Progr. Phys. Geog. 19: 192–215.Google Scholar
  50. Marsland, N., Wilson, I., Abeyasakera, S., and Kleih, U., 2000 A methodological framework for combining quantitative and qualitative survey methods. Statistical Services Centre, University of Reading, UK.Google Scholar
  51. Maurya, D. M., Bottrall, A., and Farrington, J., 1988. Improved livelihoods, genetic diversity and farmers’ participation: a strategy for rice breeding in rainfed areas of India. Exp. Agric. 24: 311–320.Google Scholar
  52. Mkumbira, J., Chiwona-Karltun, L., Lagercrantz, U., Mahungo, N. M., Saka, J., Mhone, A., Bokanga, M., Brimer, L., Gullberg, U., and Rosling, H., 2003. Classification of cassava into “bitter” and “cool” in Malawi: frm farmers’ perception to characterisation by molecular markers. Euphytica 132: 7–22.CrossRefGoogle Scholar
  53. Morris, M. L., Dubin, H. J., and Pokherel, T., 1994. Returns to wheat breeding research in Nepal. Agric Econ. 10: 269–282Google Scholar
  54. Mulatu, E., and Belete, K., 2001. Participatory varietal selection in lowland sorghum in eastern Ethiopia: impact on adoption and genetic diversity. Exp. Agric. 37: 211–229.CrossRefGoogle Scholar
  55. Munns, R. 2005. Genes and salt tolerance: bringing them together. New Phytol. 167: 645–663PubMedCrossRefGoogle Scholar
  56. Pandey, S. and Rajatasereekul, S.. 1999. Economics of plant breeding: the value of shorter breeding cycles for rice in Northeast of Thailand. Fld. Crops Res. 64: 187–197.CrossRefGoogle Scholar
  57. Parry, M. A. J., Flexas, J., and Medrano, H., 2005. Prospects for crop production under drought: research priorities and future directions. Ann. Appl. Biol. 147: 211–226CrossRefGoogle Scholar
  58. Passioura, J., 2002. Environmental biology and crop improvement. Funct. Plant. Biol. 29: 537–546.CrossRefGoogle Scholar
  59. Perry, M. W., and D’Antuono, M. F., 1989. Yield improvement and associated characteristics of some Australian spring wheat cultivars introduced between 1860 and 1982. Aust. J. Agric. Res. 40: 457–472.Google Scholar
  60. Quarrie, S. A., and Mahmood, A., 1993. Improving salt tolerance in hexaploid wheat. Annual report 1992, AFRC Institute of Plant Science Research Cambridge Laboratory John Innes Institute Nitrogen Fixation Laboratory and Sainsbury Laboratory, p 4.Google Scholar
  61. Quarrie, S. A., Steed, A., Calestani, C., Semikhodskii, A., Lebreton, C., Chinoy, C., Steele, N., Pljevljakusic, D., Waterman, E., Weyen, J., Schondelmaier, J., Habash, D. Z., Farmer, P., Saker, L., Clarkson, D. T., Abugalieva, A., Yessimbekova, M., Turuspekov, Y., Abugalieva, S., Tuberosa, R., Sanguineti, M.-C., Hollington, P. A., Aragüés, R., Royo, A., and Dodig, D., 2005. A high density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring x SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor. Appl. Gen. 110: 865–880CrossRefGoogle Scholar
  62. Quayyum, M. A., and Malik, M. D., 1988. Farm production losses in salt-affected soils. Proc. 1st Nat. Congr. Soil Sci. Lahore, Pakistan, October 1985, pp 356–364Google Scholar
  63. Qureshi, R. H., Rashid, A., and Ahmad, N., 1990. A procedure for quick screening of wheat cultivars for salt tolerance, in Genetic Aspects of Plant Mineral Nutrition, N. el Bassam, M. Dambroth, and B. C. Loughman, eds., Kluwer, pp 315–324Google Scholar
  64. Reyna, N., and Sneller, C. H., 2001 Evaluation of marker-assisted introgression of yield QTL alleles into adapted soybean. Crop Sci. 41: 1317–1321CrossRefGoogle Scholar
  65. Reynolds, M. P., Mujeeb-Kazi, A., and Sawkins, M., 2005. Prospects for utilising plant-adaptive mechanisms to improve wheat and other crops in drought- and salinity-prone environments. Ann. Appl. Biol. 146; 239–259.Google Scholar
  66. Richards, R. A., 1983. Should selection for yield in saline regions be made on saline or non-saline soils? Euphytica 32: 431–438Google Scholar
  67. Richards, R. A., 1992. Increasing salinity tolerance of grain crops: Is it worthwhile? Plant Soil 146: 89–98.CrossRefGoogle Scholar
  68. Richards, R. A., 1996. Defining selection criteria to improve yield under drought. Plant Growth Reg. 20: 57–166CrossRefGoogle Scholar
  69. Richards, R. A., 2000. Selectable traits to increase crop photosynthesis and yield of grain crops. J. Exp. Bot. 51: 447–458.Google Scholar
  70. Richards, R. A., Rebetzke, G. J., Condon, A., and van Herwaarden, A.F., 2002. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci. 42: 111–121.Google Scholar
  71. Rockström, J., Barron, J., and Fox, P., 2003. Water productivity in rain-fed agriculture: challenges and opportunities for smallholder farmers in drought-prone tropical agroecosystems, in Water Productivity in Agriculture: Limits and Opportunities for Improvement, J. W. Kijne, R. Barker, and D. Molden, eds., CABI International, Wallingford, UK. ISBN 0 85199 669 8, pp 145–162Google Scholar
  72. Salazar, R., 1992. MASIPAG: alternative community rice breeding in the Philippines. Approp. Technol. 18: 20–21Google Scholar
  73. Seckler, D., Molden, D., and Barker, R., 1998. Water scarcity in the twenty-first century. IWMI Water Brief 1. Colombo, Sri Lanka, IWMIGoogle Scholar
  74. Shannon, M. C., 1997. Adaptation of plants to salinity. Adv. Agron. 60: 75–120CrossRefGoogle Scholar
  75. Shen, L., Courtois, B., McNally, K. L., Robin, S., and Li, Z., 2001. Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor. Appl. Gen. 103: 427–437Google Scholar
  76. Slafer, G. A., Araus, J. L., and Richards, R. A., 1999. Promising traits for future breeding to increase wheat yield, in Wheat: Ecology and Physiology of Yield Determination, E. H. Satorre and G. A. Slafer, eds., New York: Food Product Press, pp. 379–415.Google Scholar
  77. Snapp, S., 1999. Mother and baby trials: a novel trial design being tried out in Malawi. In: TARGET. The Newsletter of the Soil Fertility Research Network for Maize-Based Cropping Systems in Malawi and Zimbabwe. Jan. 1999 issue. CIMMYT, ZimbabweGoogle Scholar
  78. Srivastava, J. P., and Jana, S., 1984. Screening wheat and barley germplasm for salt tolerance, in Salinity Tolerance in Plants – Strategies for Crop Improvement, R. C. Staples and G. H. Toenniessen, eds., New York, Wiley., pp. 273–283Google Scholar
  79. Steele, K. A., Edwards, G., Zhu, J., and Witcombe, J. R., 2004. Marker-evaluated selection in rice: shifts in allele frequency among bulks selected in contrasting agricultural environments identify genomic regions of importance to rice adaptation and breeding. Theor. Appl. Genet. 109: 1247–1260PubMedCrossRefGoogle Scholar
  80. Steele, K. A., Price, A. H., Shashidar, H. E., and Witcombe, J. R., 2006. Marker-assisted selecton to introgress rice QTLs controlling root traits into an Indian upland rice variety. Fld. Crops Res. 112: 28–221Google Scholar
  81. Steele, K. A., Virk, D. S., Kumar, R., Prasad, S. C., and Witcombe, J. R., Field evaluation of upland rice lines selected for QTLs controlling root traits. Fld. Crops Res. 101:180–186.Google Scholar
  82. Sthapit, B. R., Joshi, K. D., and Witcombe, J. R., 1996. Farmer participatory crop improvement. III. Participatory plant breeding, a case study of rice in Nepal. Exp. Agric. 32: 487–504CrossRefGoogle Scholar
  83. Stirling, C. M., and Witcombe, J. R., 2004. Farmers and Plant Breeders In Partnership. 2nd edition. Dept. for International Development (DFID) Plant Sciences Research Programme (PSP) and Centre for Arid Zone Studies (CAZS). Bangor, UK: CAZS, University of Wales Bangor.Google Scholar
  84. Szabolcs, I., 1994. Soils and salinization, in Handbook of Plant and Crop Stress, M. Pessarakli, M., ed., New York, USA: Marcel Dekker, pp. 3–11Google Scholar
  85. Tambussi, E. A., Nogués, S., Ferrio, P., Voltas, J., and Araus, J.L., 2005. Does higher yield improve barley performance in Mediterranean conditions? A case study. Fld. Crops Res. 91: 149–160.CrossRefGoogle Scholar
  86. Thakur, R., 1995. Prioritization and development of breeding strategies for rainfed lowlands: a critical appraisal. In: Proc. IRRI Conference, 1995: Fragile Lives in Fragile Ecosystems. Los Baños, Philippines, IRRI, Pp 817–824.Google Scholar
  87. Turner, N. C., 2003. Drought resistance: a comparison of two research frameworks, in Management of agricultural drought: agronomic and genetic options. N. P. Saxena, ed., Enfield, Science Publishers, pp. 89–102.Google Scholar
  88. Turner, N. C., 2004a. Sustainable production of crops and pastures under drought in a Mediterranean environment. Ann. Appl. Biol. 144: 139–147.CrossRefGoogle Scholar
  89. Turner, N. C., 2004b. Agronomic options for improving rainfall-use efficiency of crops in dryland farming systems. J. Exp. Bot. 55: 2413–2425CrossRefGoogle Scholar
  90. Virk, D. S., and Witcombe, J. R., 2002. An introduction to data management and analysis for participatory varietal selection trials, in Breeding Rainfed Rice for Drought-Prone Environments: Integrating Conventional and Participatory Plant Breeding in South and Southeast Asia. Proc. DFID Plant Sci. Res. Prog. / IRRI Conf, 12–15 March 2002, IRRI, Los Baños, Laguna, Philippines, J. R. Witcombe, L. B. Parr and G. N. Atlin, eds., Bangor and Manila: Department for International Development (DFID) Plant Sciences Research Programme, Centre for Arid Zone Studies (CAZS) and International Rice Research Institute (IRRI), pp. 69–72.Google Scholar
  91. Virk, D. S., Chakraborty, M., Ghosh, J., Prasad, S. C., and Witcombe, J. R., 2005. Collaborative and consultative participatory plant breeding of rice for the rainfed uplands of eastern India. Euphytica 132: 95–108.Google Scholar
  92. Virk, D. S., Packwood, A. J. P., and Witcombe, J. R., 1996. Plant breeding, varietal testing and popularisation, and research linkages. Paper presented at ODA / ICAR workshop on Reorganising Research for Rainfed Farming. CRIDA, Hyderabad, 11–15 September, 1995.Google Scholar
  93. Virk, D. S., Singh, D. N., Prasad, S. C., Gangwal, J. S., and Witcombe, J. R., 2003. Collaborative and consultative participatory plant breeding of rice for the rainfed uplands of eastern India. Euphytica 132: 95–108.CrossRefGoogle Scholar
  94. Witcombe, J. R., 2002a A mother and baby trial system, in Breeding Rainfed Rice for Drought-Prone Environments: Integrating Conventional and Participatory Plant Breeding in South and Southeast Asia. Proc. DFID Plant Sci. Res. Prog. / IRRI Conf, 12–15 March 2002, IRRI, Los Baños, Laguna, Philippines, J. R. Witcombe, L. B. Parr and G. N. Atlin, eds., Bangor and Manila: Department for International Development (DFID) Plant Sciences Research Programme, Centre for Arid Zone Studies (CAZS) and International Rice Research Institute (IRRI), pp. 79–89.Google Scholar
  95. Witcombe, J. R., and Virk, D. S., 2001. Number of crosses and population size for participatory and classical plant breeding. Euphytica 122: 451–462CrossRefGoogle Scholar
  96. Witcombe, J. R., Gyawali, S., Sunwar, S., Sthapit, B. R., and Joshi, K. D., 2006. Participatory plant breeding is better described as highly client-oriented plant breeding. II. Optional farmer collaboration in the segregating generations. Exp. Agric. 42: 79–90Google Scholar
  97. Witcombe, J. R., Joshi, A., and Goyal, S. N., 2003. Participatory plant breeding in maize: A case study from Gujarat, India. Euphytica 130: 413–422CrossRefGoogle Scholar
  98. Witcombe, J. R., Joshi, A., Joshi, K. D., and Sthapit, B. R., 1996. Farmer participatory crop improvement. I. Varietal selection and breeding methods and their impact on biodiversity. Exp. Agric. 32: 445–460Google Scholar
  99. Witcombe, J. R., Joshi, K. D., Gyawali, S., Musa, A. M., Johansen, C., Virk, D. S., and Sthapit, B R., 2005. Participatory plant breeding is better described as highly client-oriented plant breeding. I. Four indicators of client-orientation in plant breeding. Exp. Agric. 41: 299–319CrossRefGoogle Scholar
  100. Witcombe, J. R, Packwood, A. J. P., Raj, A. G. B., and Virk, D. S., 1998. The extent and rate of adoption of modern cultivars in India. In Seeds of choice: Making the most of New Varieties for Small Farmer 53–58 (Eds J. R. Witcombe, D. S. Virk and J. Farrington). New Delhi: Oxford IBH, and London: Intermediate Technology Publications.Google Scholar
  101. Witcombe, J. R., Subedi, M., and Joshi, K. D., 2001. Towards a practical participatory plant-breeding strategy in predominantly self-pollinated crops, in An Exchange of Experiences from South and Southeast Asia: Proc. Int. Symp. on Participatory Plant Breeding and Participatory Plant Genetic Resources Enhancement, CGIAR Programme for Participatory Research and Gender Analysis (PGRA), Cali, Colombia, pp 243–248Google Scholar
  102. Worede. M., and Mekbib, H., 1993. Linking genetic resource conservation to farmers in Ethiopia, in Cultivating knowledge: genetic diversity, farmer experimentation and crop research, W. de Boef, K. Amanor and K. Wellard, eds., London: Intermediate Technology Publications, pp 78–84.Google Scholar
  103. WRI. 2000. World Resources Institute. World resources: People and ecosystems, the fraying web of life. Oxford: Elsevier Science.Google Scholar
  104. Yeo, A. R., 1999. Predicting the interaction between the effects of salinity and climate change on crop plants. Sci. Hort. 78: 159–174Google Scholar
  105. Yeo, A. R., Yeo, M. E., and Flowers, T. J., 1988. Selection of lines with high and low sodium transport from within varieties of an inbreeding species, rice (Oryza sativa L.). New Phytol. 110: 13–19CrossRefGoogle Scholar
  106. Young, A., 1999. Is there really spare land? A critique of estimates of available cultivable land in developing countries. Env, Dev and Sust 1: 3–18.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • P.A. Hollington
    • 1
  • Katherine A. Steele
    • 1
  1. 1.CAZS Natural ResourcesUniversity of Wales BangorUK

Personalised recommendations