Abstract

Plants are among the most tolerant of organisms to pollution, which emphasises their utility for the emerging science of environmental biotechnology. Many botanical families, in particular the Brassicaceae, Poaceae, Fabaceae, Asteraceae, Salicaceae, Chenopodiaceae, and Careophylaceae include multiple species showing phytoremediation potential, and other families (Cyperaceae, Amaranthaceae, Cannabaceae, Cannaceae, Typhaceae and Pontederiaceae) contain promising individual species: Each species enjoys certain advantages, but suffers some limitations for application as phytoremediants. Careful selection of the appropriate family and genotype to match the particular pollutant and environment is crucial for successful phytoremediation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson C. W. N., Brooks R. R., Stewart R. B., and Simcock R., 1998, Harvesting a crop of gold in plants, Nature 395:553–554.CrossRefGoogle Scholar
  2. Bakker M. I., Vorehout M., Sum D. T. H. M., and Kolloffel C., 1999, Dry deposition of atmospheric polycyclic aromatic hydrocarbons in three Plantago species. Environ. Toxicol. Chem. 10:289–2294.Google Scholar
  3. Brooks R. R., 1998, Plants that hyperaccumulate heavy metals, CAB International, University Press, Cambridge.Google Scholar
  4. Chaney R. L., Angle J. S., Wang A. S., McIntosh M.S., Broadhurst L., and Reeves R. D., 2005, Phytoextraction of soil Cd, Ni and Zn using hyperaccumulator plants to alleviate risks of metal contaminated soils requiring remediation. International Workshop Current developments in remediation of contaminated lands p. 39, 27–29 October 2005. Pulawy, Poland.Google Scholar
  5. Cobbett C. S., 2000, Phytochelatins and their role in heavy metal detoxification, Plant Physiol. 123:825–832.CrossRefGoogle Scholar
  6. Fletcher J. S., and Hegde R. S., 1995, Release of phenols by perennial plant roots and their potential importance in bioremediation. Chemosphere 31:3009–3016.CrossRefGoogle Scholar
  7. Goldsbrough P., 2000, Metal tolerance in plants: The role of phytochelatins and metallothioneins, in: Phytoremediation of contaminated soil and water, N. Terry, G. Banuelos, eds, Lewis Publishers, Boca Raton.Google Scholar
  8. Harms H., Bokern M., Kolb M., and Bock C., 2003, Transformation of organic contaminants by different plant system, in: Phytoremediation; Transformation and control of contaminants, S. C. McCutcheon, J. L. Schnoor, eds., John Wiley & Sons, Inc., Hoboken, New Jersey.Google Scholar
  9. Hermanson M. H., and Hites R. A., 1990, Polychlorinated biphenyls in tree bark, Environ. Sci. Technol. 24:666–671.CrossRefGoogle Scholar
  10. Ma Q. L., Komar K. M., Tu C., Zhang W., Cai Y., and Kennelley E. D., 2001, A fern that hyperaccumulates arsenic, Nature 409:579.CrossRefGoogle Scholar
  11. Newman A. L., Strand S. E., Choe N., Duffy J., Ekuan G., Ruszaj M., Shurtleff B. B., Wilmoth J., Heilman P., and Gordon M. P., 1997, Uptake and biotransformation of trichloroethylene by hybrid poplar, Environ. Sci. Technol. 31:1062–1067.CrossRefGoogle Scholar
  12. Morikawa H., Higaki A., Nohno M., Takahashi M., Kamada M., Nakata M., Toyohara G., Okamura Y., Matsui K., Kitani S., Fujita K., Irifune K., and Goshima N., 1999, More than a 600-fold variation in nitrogen dioxide assimilation among 217 plant taxa, Plant Cell Environ. 21:180–190.CrossRefGoogle Scholar
  13. Orcutt D. M., and Nilsen E.T., 2000, The physiology of plants under stress, John Wiley & Sons Inc., New York.Google Scholar
  14. Piechalak A., Tomaszewska B., Baralkiewicz D., and Malecka A., 2002, Accumulation and detoxification of lead ions in legumes. Phytochemistry 60:153–162.CrossRefGoogle Scholar
  15. Pulford I. D., Riddel-Black D., and Stewart C., 2002, Heavy metal uptake by willow clones from sewage sludge-treated soil: The potential for phytoremediation. Int. J. Phytorem. 4:59–72.CrossRefGoogle Scholar
  16. Rauser W. E., 1995, Phytochelatins and related peptides, Plant Physiol. 109:1141–1149.CrossRefGoogle Scholar
  17. Sell J., Kayser A., Schulin R., and Brunner I., 2005, Contribution of ectomicorrhizal fungi to cadium uptake of poplar and willows from a havey polluted soil, Plant Soil 277:245–253.CrossRefGoogle Scholar
  18. Staci L. S., and Hites R. A., 1994, Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere, Nature 370:49–51.CrossRefGoogle Scholar
  19. White P. M., Wolf D. C., Thoma G. J., and Reynolds C. M., 2006, Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil, Water Air Soil Pollut. 160:207–220.CrossRefGoogle Scholar
  20. Winska-Krysiak M., and Gawronski S. W., 2002, Fizjologiczne aspekty tolerancji i hiperakumulacji ołowiu w wybranych genotypach Brassica. [Physiological aspects of lead tolerance and hyperaccumulationin Brassica species]. Zeszyty Problemowe Postepów Nauk Rolniczych 481:605–613.Google Scholar
  21. Wolverton B. C., 1997, How to grow fresh air: 50 house plants that purify your home or office, Penguin. 144 p. New York, USA.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • STANISŁAW W. GAWRONSKI
    • 1
  • HELENA GAWRONSKA
    • 1
  1. 1.Laboratory for Basic Research in Horticulture, Faculty of Horticulture and Landscape ArchitectureWarsaw Agricultural UniversityWarsawPoland

Personalised recommendations