Advertisement

Sources of reactive nitrogen affecting ecosystems in Latin America and the Caribbean: current trends and future perspectives

  • Luiz A. Martinelli
  • Robert W. Howarth
  • Elvira Cuevas
  • Solange Filoso
  • Amy T. Austin
  • Loreta Donoso
  • Vera Huszar
  • Dennis Keeney
  • Luciene L. Lara
  • Carlos Llerena
  • George Mcissac
  • Ernesto Medina
  • Jorge Ortiz-Zayas
  • Donald Scavia
  • David W. Schindler
  • Doris Soto
  • Alan Townsend

Abstract

While the amount of reactive nitrogen circulating at the global level has increased markedly in the last century, the effects of this increase are largely seen at the regional level due to interacting ecological and socio-economic factors. In contrast with most other regions of the world, Latin America and the Caribbean (LA-Ca) stand out due to the fact that the major input of reactive nitrogen (Nr) still occurs naturally via biological nitrogen fixation (BNF) in natural ecosystems as opposed to anthropogenic inputs of synthetic fertilizer, fossil fuel combustion and cropping with leguminous species. Largely due to economic reasons, the consumption of fertilizer N in the LA-Ca region is still low in comparison with the average consumption of the world. However, the fertilizer N consumption is increasing at a much faster rate than that in developed regions of the world, like USA and Canada. The Nr production through BNF in cultivated plants that fix nitrogen (C-BNF) is 5 times lower than that occurring naturally in Latin America, but is still equivalent to 16% of the world C-BNF. The cultivation of nitrogen-fixing crop species in the LA-Ca region is also increasing, almost entirely due to the expansion of soybean fields in the central and northern regions of Brazil and the Pampa region of Argentina. Other anthropogenic activities in the region that contribute to an increase in the circulation of reactive nitrogen include the impact of biomass burning and urbanization. In the last decade, an average of 47,000 km2 per year of forests was burned in the LACa region. The environmental impact of urban centers in the LA-Ca region has become very important, since an intense urbanization process is occurring in this region, at an intensity that far exceeds urban development in the northern hemisphere. The consequences of increased urbanization include increased emissions of NOx to the atmosphere due to the fossil fuel combustion, and the lack of sewage treatment facilities in most cities of the LA-Ca result in a large volume of untreated sewage discharged into surface waters, creating serious environmental problems. The combination of rapid urbanization and agricultural intensification in this region suggest that concern is warranted for the potential for increase in the circulation of reactive nitrogen in the very near future. At the same time, the opportunity still exists to mitigate some of the consequences of human impact on the nitrogen cycle in a region that still maintains a large fraction of its natural ecosystems intact.

Key words

Biomass burning Caribbean Latin America Nitrogen Reactive agriculture Urbanization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alves B.J.R., Boddey R.M. and Urquiaga S. 2003. The success of BNF in soybean in Brazil. Plant Soil 252: 1–9.CrossRefGoogle Scholar
  2. Austin A.T., Howarth R.H., Baron J.S., Chapin III F.S., Christensen T.R., Holland E.A., Ivanov M.V., Lien A.Y., Martinelli L.A., Melillo J.M. and Shang C. 2003. Human disrpution of element interactions: drivers, consequences and trends for the 21st century. In: Melillo J.M., Field C.B. and Moldan B. (eds), Interactions of Major Biogeochemical Cycles: Global Change and Human Impacts, Island Press, Washington DC, pp. 15–46.Google Scholar
  3. Austin A.T., Piñiero G. and Gonzalez Polo M. More is less: agricultural impacts on the N cycle in Argentina. Biogeochemistry (this volume).Google Scholar
  4. Boddey R.M., Urquiaga S., Reis V.M. and Döbereiner J. 1991. Biological nitrogen fixation associated with sugarcane. Plant Soil 137: 111–117.CrossRefGoogle Scholar
  5. Boddey R.M., Urquiaga S., Alves B.J.R. and Reis V. 2003. Endophytic nitrogen fixation in sugarcare: present knowledge and future applications. Plant Soil 252: 139–149.CrossRefGoogle Scholar
  6. Boddey R.M., Macedo R., Tarre R.M., Ferreira E., de Oliveira O.C., Rezende C.P., Cantarutti R.B., Pereira J.M., Alves B.J.R. and Urquiaga S. 2004. Nitrogen cycling in Brachiaria pastures: the key to understanding the process of pasture decline. Agric. Ecosyst. Environ. 103: 389–403.CrossRefGoogle Scholar
  7. Daniel M.H.B., Montebello A.A., Bernardes M.C., Ometto J.P.H.B., Camargo P.B., Krusche A.V., Ballester M.V., Victoria R.L. and Martinell L.A. 2002. Effects of urban sewage on dissolved oxygen, dissolved inorganic carbon and organic carbon, and electrical conductivity of small streams along a gradient of urbanization in the Piracicaba River basin. Water Air Soil Poll. 136: 189–206.CrossRefGoogle Scholar
  8. Dentener F.J. and Crutzen P.J. 1994. A three-dimentional model of the global ammonia cycle. J. Atmos. Chem. 19: 331–369.CrossRefGoogle Scholar
  9. FAOSTAT. 2004. Food and Agriculture Organization of the United Nations, Statistical Databases [online] URL: http://www.apps.fao.org/.Google Scholar
  10. Filoso S., Martinelli L.A., Howarth R.W., Boyer E.W. and Dentener F. Human activities changing the N cycle in Brazil. Biogeochemistry (this volume).Google Scholar
  11. FRA 2000 — Global Forest Resources Assessment. 2000. Food and Agriculture Organization of the United Nations. Forestry Department.Google Scholar
  12. Galanter M., Levy II H. and Carmichael G.R. 2000. Impacts of biomass burning on tropospheric CO, NOx, and O3. J. Geophys. Res. 105(D5): 6633–6653.CrossRefGoogle Scholar
  13. Galloway J.N. 2003. Acid deposition: S and N cascades and elemental interactions. In: Melillo J.M., Field C.B. and Moldan B. (eds), Interactions of the Major Biogeochemical Cycles. Global Changes and Human Impacts, Island Press, Washington DC, pp. 259–272.Google Scholar
  14. Galloway J.N. and Cowling E.B. 2002. Reactive nitrogen and the world: 200 years of change. Ambio 31: 64–71.PubMedGoogle Scholar
  15. Galloway J.N., Dentener F.J., Capone D.G., Boyer E.W., Howarth R.W., Seitzinger S.P., Asner G.P., Cleveland C., Green P., Holland E., Karl D.M., Michaels A.F., Porter J.H., Townsend A. and Vorösmarty C. 2004. Nitrogen cycles: past, present and future. Biogeochemistry 70(2): 153–226.CrossRefGoogle Scholar
  16. Global Environment Outlook 3. 2003. Past, present and future perspectives. United Nations Environmental Programme.Google Scholar
  17. Global Water Supply and Sanitation Assessment. 2000. World Health Organization — UNICEF Joint Monitoring Programme for Water Supply and Sanitation.Google Scholar
  18. Holland E.A. and Carroll M.A. 2003. Linking the bio-atmosphere carbon and nitrogen cycles and atmospheric chemistry. In: Melillo J.M., Field C.B. and Moldan B. (eds), Interactions of the Major Biogeochemical Cyles. Global Changes and Human Impacts, Island Press, Washington DC, pp. 273–292.Google Scholar
  19. Holland E.A., Dentener F.J., Brasswell B.H. and & Sulzman J.M. 1999. Contemporary and pre-industrial global reactive nitrogen budgets. Biogeochemistry 46: 7–43.Google Scholar
  20. Howarth R.W., Boyer E.W., Pabich W.J. and Galloway J.N. 2002. Nitrogen use in the United States from 1961–2000 and potential future trends. Ambio 31: 88–96.PubMedGoogle Scholar
  21. Hoelzemann J.J., Schultz M.G., Brasseur G.P., Granier C. and Simon M. 2004. Global Wildland Fire Emission Model (GWEM): Evaluating the use of global area burnt satellite data. J. Geophys. Res. 109, D14S04, doi:10.1029/2003JD003666.CrossRefGoogle Scholar
  22. Human Development Report. 2003. Millennium Development Goals: a compact among nations to end human poverty (2003). United Nations Development Programme (UNDP), Oxford University Press, New York.Google Scholar
  23. INPE. 2004. Monitoramento da floresta Amazonica brasileira por satelite — Projeto PRODES. Instituto Nacional de Pesquisas Espaciais, [online] URL: http://www.obt.inpe.br/prodes/.Google Scholar
  24. Lara L.L., Holland E.A., Artaxo P., Camargo P.B. and Martinelli L.A. Linking nitrogen deposition patterns and land use change in tropical areas. Biogeochemistry (this volume).Google Scholar
  25. Martinelli L.A., Krusche A.V., Victoria R.L., Camargo P.B., Bernardes M.C., Ferraz E.S., Moraes J.M. and Ballester M.V. 1999. Effects of sewage on the chemical composition of Piracicaba River, Brazil. Water Air Soil Poll. 110: 67–79.CrossRefGoogle Scholar
  26. Martinelli L.A., Silva A.M., Camargo P.B., Moretti L.R., Tomazelli A.C., Silva D.M.L., Fischer E.G., Sonoda K.C. and Salomão M.S.M.B. 2002. Levantamento das cargas orgânicas lançadas nos rios do Estado de São Paulo. Biota Neotrópica 2: 1–18.Google Scholar
  27. Miranda C.H.B. and Boddey R.M. 1987. Estimation of biological nitrogen fixation with 11 ecotypes of Panicum maximum grown in nitrogen-15 labeled soil. Agron. J. 79: 558–563.CrossRefGoogle Scholar
  28. Mosier A.R., Syers J.K. and Freney J.R. 2004. Nitrogen fertilizer: an essential component of increased food, feed and fiber production. In: Mosier A.R., Keith Syers J. and Freney J.R. (eds), Agriculture and the Nitrogen Cycle, Assessing the Impacts of Fertilizer Use on Food Production and the Environment SCOPE 65, Island Press, Washington DC, pp. 3–18.Google Scholar
  29. Oliveira M.E.D., Vaughan B.E. and Rykiel Jr. E.J. 2005. Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint. Bioscience 55: 593–602.CrossRefGoogle Scholar
  30. Potter C., Genovese V.B., Klooster S. and Torregrosa A. 2002. Biomass burning emissions of reactive gases estimated from satellite data analysis and ecosystem modeling for the Brazilian Amazon region. J. Geophys. Res. 107((D20)): Art. No. 8056.Google Scholar
  31. Schultz M.G. 2002. On the use of ATSR fire count data to estimate the seasonal and interannual variability of vegetation fire emissions. Atmos. Chem. Phys. 2: 387–395.Google Scholar
  32. Schurkes J.A. and Mosello R. 1988. The role of external ammonium inputs in freshwater acidification. Schweiz. Zeit. Hydrol. 88: 71–86.CrossRefGoogle Scholar
  33. Trebbs I., Lara L. L., Zeri L. M. M., Gatti L. V., Artaxo P., Dlugi R., Slanina J., Andreae M. O. and Meixner F. X. 2006. Dry and wet deposition of inorganic nitrogen compounds to a tropical pasture site (Rondônia, Brazil). Atmos. Chem. Phys. 6: 447–469.CrossRefGoogle Scholar
  34. Williams M.R. and Melack J.M. 1997. Solute export from forested and partially deforested catchments in the central Amazon. Biogeochemistry 38: 67–102.CrossRefGoogle Scholar
  35. World Urbanization Prospects. 2003. The 2003 Revision (2004) Department of Economic and Social Affairs. Population Division, United Nations, New York.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Luiz A. Martinelli
    • 1
  • Robert W. Howarth
    • 2
  • Elvira Cuevas
    • 3
  • Solange Filoso
    • 2
  • Amy T. Austin
    • 4
  • Loreta Donoso
    • 5
  • Vera Huszar
    • 6
  • Dennis Keeney
    • 7
    • 8
  • Luciene L. Lara
    • 1
  • Carlos Llerena
    • 9
  • George Mcissac
    • 10
  • Ernesto Medina
    • 11
  • Jorge Ortiz-Zayas
    • 12
  • Donald Scavia
    • 13
  • David W. Schindler
    • 14
  • Doris Soto
    • 15
  • Alan Townsend
    • 16
  1. 1.CENAPiracicaba, SPBrazil
  2. 2.Ecology & Environmental Biology DepartmentCornell UniversityIthacaUSA
  3. 3.Department of Biology, College of Natural SciencesUniversity of Puerto RicoSan Juan, Puerto Rico
  4. 4.Faculty of AgronomyUniversity of Buenos Aires and IFEVA-CONICETBuenos AiresArgentina
  5. 5.Centro de Ecología, IVICInstituto Venezuelano de Investigaciones Científicas — IVICCaracasVenezuela
  6. 6.Departamento de BotânicaUniversidade Federal do Rio de JaneiroSão Cristóvão — Rio de Janeiro, RJBrasil
  7. 7.Agriculture and Biosystems EngineeringIowa State UniversityAmesUSA
  8. 8.Institute for Agriculture and Trade PolicyMinneapolisUSA
  9. 9.Universidad Nacional Agraria La MolinaLimaPeru
  10. 10.Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana ChampaignUrbanaUSA
  11. 11.Laboratory Plant Physiological Ecology, Centro de Ecología, IVICInstituto Venezolano de Investigaciones CientíficasCaracasVenezuela
  12. 12.Institute for Tropical Ecosystems StudiesUniversity of Puerto RicoSan Juan, Puerto Rico
  13. 13.School of Natural Resources and EnvironmentUniversity of MichiganAnn ArborUSA
  14. 14.Ecology DepartmentUniversity of AlbertaEdmontonCanada
  15. 15.Universidad Austral de ChilePuerto MonttChile
  16. 16.INSTAAR and EPO-BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations