Advertisement

RADIATION-ENHANCED DIFFUSION AND RADIATION-INDUCED SEGREGATION

  • Todd R. Allen
  • Gary S. Was
Part of the NATO Science Series book series (NAII, volume 235)

Abstract

In this chapter, the basic point defect kinetic equations and the solutions in different temperature and microstructural regimes are presented. The transient and steady-state solutions to the point defect kinetic equation are then described. Equations for radiation-induced segregation (RIS) are developed by adding diffusion terms to the point defect kinetic equations and allowing for multiple constituents in an alloy. The solution to the RIS equations are developed and segregation in austenitic Fe-Cr-Ni alloys is described in detail to provide insight into segregation behavior. Finally, a simple model that includes composition dependent diffusion parameters is described. This composition-dependent model improved the ability of RIS models to predict segregation in Fe-Cr-Ni alloys.

Keywords

Saddle Point Migration Energy Chromium Depletion Atom Flux Interstitial Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. [1]
    Sizman, R., J. Nucl. Mater. 69&70, 386 (1968)Google Scholar
  2. [2]
    Lam, N. Q. Kumar, A. and Wiedersich, H. Effects of Radiation on Materials: Eleventh conference, ASTM STP 782, ed by H. R. Brager, J. S. Perrin (American Society for Testing and Materials 1982) pp 985–1007Google Scholar
  3. [3]
    Hindmarsch, A. C. UCID-30001, Rev 3 (December 1974)Google Scholar
  4. [4]
    Perks, J.M., Marwick, A.D. and English, C.A. AERE R 12121 (June 1986)Google Scholar
  5. [5]
    Simonen, E. P, Bruemmer, S. M. Proceedings of the 1994 MRS Fall Meeting: Symposium Y: Microstructure of Irradiated Materials, ed by I. M. Robertson, L. E. Rehn, S. J. Zinkle, W. J. Phythian (Mater. Res. Soc. Proc. 373, Pittsburgh, PA 1995) p 95Google Scholar
  6. [6]
    Okamoto, P. R. and Rehn, L. E. J. Nucl. Mater. 83, 2 (1979)CrossRefGoogle Scholar
  7. [7]
    Okamoto, P. R. and Wiedersich, H, J. Nucl. Mater. 53, 336 (1974)CrossRefGoogle Scholar
  8. [8]
    Rothman, S.J., Nowicki, L.J., and Murch, G.E. J. of Physics F: Metal Physics 10, 383 (1980)CrossRefADSGoogle Scholar
  9. [9]
    Allen, T. R. and Was, G. S. Proceedings of the 1994 MRS Fall Meeting: Symposium Y: Microstructure of Irradiated Materials., ed by I. M. Robertson, L. E. Rehn, S. J. Zinkle, W. J. Phythian (Mater. Res. Soc. Proc. 373, Pittsburgh, PA 1995) p 101Google Scholar
  10. [10]
    Damcott, D. L., Allen, T. R., and Was, G. S., J. Nucl. Mater. 225, 97 (1995)CrossRefGoogle Scholar
  11. [11]
    Allen, T. R., Busby, J. T., Was, G. S., Kenik, E. A. J. Nucl. Mater. 255, 44 (1998)CrossRefGoogle Scholar
  12. [12]
    Grandjean, Y., Bellon, P., and Martin, G., Phys. Rev. B 50, 4228 (1994)CrossRefADSGoogle Scholar
  13. [13]
    Allen, T. R. and Was, G. S., Acta Met. 46, 3679 (1998)CrossRefGoogle Scholar
  14. [14]
    Nastar, M. and Martin, G., Mat. Sci. Forum 294–296, 83 (1999)CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Todd R. Allen
    • 1
  • Gary S. Was
    • 2
  1. 1.University of WisconsinMadison
  2. 2.University of MichiganAnn Arbor

Personalised recommendations