Advertisement

The effects of climate change on the long-term conservation of Fagus grandifolia var. mexicana, an important species of the Cloud Forest in Eastern Mexico

  • Oswaldo Téllez-Valdés
  • Patricia Dávila-Aranda
  • Rafael Lira-Saade
Part of the Topics in Biodiversity and Conservation book series (TOBC, volume 2)

Abstract

We examined the effects of climate change on the future conservation and distribution patterns of the cloud forests in eastern Mexico, by using as a species model to Fagus grandifolia Ehr. var. mexicana (Martínez) Little which is mainly located in this vegetation type, at the Sierra Madre Oriental. This species was selected because it is restricted to the cloud forest, where it is a dominant element and has not been considered for protection in any national or international law. It is probably threatened due to the fact that it plays an important social role as a source of food and furnishing. We used a floristic database and a bioclimatic modeling approach including 19 climatic parameters, in order to obtain the current potential distribution pattern of the species. Currently, its potential distribution pattern shows that it is distributed in six different Mexican Priority Regions for Conservation. In addition, we also selected a future climate scenario, on the basis of some climate changes predictions already proposed. The scenario proposed is characterized by +2 °C and −20% rainfall in the region. Under this predicted climatic condition, we found a drastic distribution contraction of the species, in which most of the remaining populations will inhabit restricted areas located outside the boundaries of the surrounding reserves. Consequently, our results highlight the importance of considering the effects of possible future climate changes on the selection of conservation areas and the urgency to conserve some remaining patches of existing cloud forests. Accordingly, we believe that our bioclimatic modeling approach represents a useful tool to undertake decisions concerning the definition of protected areas, once the current potential distribution pattern of some selected species is known.

Key words

BIOCLIM Bioclimatic modeling Climate change Cloud forest Fagus Sierra Madre Oriental 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcantara O. and Luna V.I. 1997. Florística y análisis biogeográfico del bosque mesófilo de montaña de Tenango de Doria, Hidalgo, México. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Botánica 68: 57–106.Google Scholar
  2. Alcántara O. and Luna V.I. 2001. Análisis florístico de dos áreas con bosque mesófilo de montaña en el estado de Hidalgo, México: Eloxochitlán y Tlahuelompa. Acta Botánica Mexicana 54:51–87.Google Scholar
  3. Anónimo 2000. Proyecto de Norma Oficial Mexicana PROY-NOM-059-ECOL-2000, protección ambiental-especies de flora y fauna silvestres de México-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio. Lista de especies en riesgo. Diario Oficial de la Federación. de octubre de 2000.Google Scholar
  4. Arriaga L., Espinoza J.M., Aguilar C., Martínez E., Gómez L. and Loa E. (coordinadores) 2000. Regiones Terrestres Prioritarias de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México.Google Scholar
  5. Booth T.H., Nix H.A. and Hutchinson M.F. 1987. Grid matching: a new method for homoclime analysis. Agric. For. Meteorol. 39: 241–255.CrossRefGoogle Scholar
  6. Briones O.L. 1991. Sobre la flora, vegetación y fitogeografía de la Sierra de San Carlos, Tamaulipas. Acta Botánica Mexicana 16: 15–44.Google Scholar
  7. Canziani O.F. and Diaz S. 1998. Latin America. In: Watson R.T., Zinyowera M.C., Moss R.H. and Dokken D.J. (eds), The Regional Impacts of Climate Change: An Assessment of Vulnerability. Special Report of IPCC Working Group II. Cambridge University Press, Cambridge, UK, pp. 187–230.Google Scholar
  8. Cartujano S., Zamudio S., Alcantara O. and Luna I. 2002. El bosque mesófilo de montaña en el municipio de Landa de Matamoros, Querétaro, México. Boletín de la Sociedad Botánica de México 70: 13–44.Google Scholar
  9. Churchill S.P., Griffin III D. and Lewis M. 1995. Moss diversity of the Tropical Andes. In: Churchill S.P., Balslev H., Forero E. and Luteyn J.L. (eds), Biodiversity and Conservation of Neotropical Montane Forestes. Proceedings of the Neotropical Montane Forest Biodiversity and Conservation Symposium. The New York Botanical Garden, 21–26 June 1993, New York, pp. 335–348.Google Scholar
  10. ESRI (Environmental Scientific Research Institute) 2000. ArcView 3.2. ESRI. Redlands, California, USA.Google Scholar
  11. Giorgi F., Meehl G.A., Kattenberg A., Grassl H., Mitchell J.F.B., Stouffer R.J., Tokiioka T., Weaver A.J. and Wigley T.M.L. 1998. Simulated changes in vegetation distribution under global warning. In: Watson R.T., Zinyowera M.C., Moss R.H. and Dokken D.J. (eds), The Regional Impacts of Climate Change: An Assessment of Vulnerability. Special report of IPCC working group II. Cambridge University Press, Cambridge, UK, pp. 427–437.Google Scholar
  12. Houlder D.J., Hutchinson M.F., Nix H.A. and McMahon J.P. 2000. ANUCLIM 5.1 User Guide, Centre for Resource and Environmental Studies. Australian National University, Australian Capital Territory, Canberra.Google Scholar
  13. Houghton J.T., Callander B.A. and Varney S.K. 1992. Climate change 1992. The Supplementary Report to the IPCC Scientific Assessment. Cambridge University Press, Cambridge, UK.Google Scholar
  14. Hutchinson M.F. 1991. The application of thin-plate smoothing splines to continent-wide data assimilation. In: Jasper J.D. (ed.), BMRC Research Report Series. Bureau of Meteorology, Melbourne, Australia, pp. 104–113.Google Scholar
  15. Hutchinson M.F. 1995a. Interpolating mean rainfall using thin plate smoothing splines. Int. J. Geogr. Inform. Syst. 9: 385–403.Google Scholar
  16. Hutchinson M.F. 1995b. Stochastic space-time weather models from ground-based data. Agric. For. Meteorol. 73: 237–264.CrossRefGoogle Scholar
  17. Hutchinson M.F. 1997. ANUSPLIN. Version 4.1. User guide, Centre for Resource and Environmental Studies, Australian National University, Australian Capital Territory, Canberra.Google Scholar
  18. Hutchinson M.F. and Gessler P.E. 1994. Splines — more than just a smooth interpolator. Geoderma 62: 45–67.CrossRefGoogle Scholar
  19. Johnston M.C., Nixon K., Nesom G.L., and Martínez M. 1989. Listado de plantas vasculares conocidas de la Sierra de Guatemala, Gómez Farías, Tamaulipas, México. Biotam 1:21–33.Google Scholar
  20. Kappelle M., Van Vuuren M.M.I. and Baas P. 1999. Effects of climate change on biodiversity. A review and identification of key research issues. Biodiv. Conserv. 8: 1383–1397.CrossRefGoogle Scholar
  21. Karl T.A. 1998. Regional trends and variation of temperature and precipitation. In: Watson R.T., Zinyowera M.C., Moss R.H. and Dokken D.J. (eds), The Regional Impacts of Climate Change: An Assessment of Vulnerability. Special Report of IPCC Working Group II. Cambridge University Press, Cambridge, UK, pp. 411–425.Google Scholar
  22. Lindenmayer D.B., Nix H.A., McMahon J.P., Hutchinson M.F. and Tanton M.T. 1991. The conservation of Leadbeater’s possum, Gymnobelideus leadbeateri (McCoy): a case study of the use of bioclimatic modelling. J. Biogeogr. 18: 371–383.CrossRefGoogle Scholar
  23. Little E.L. Jr. 1965. Mexican beech, a variety of Fagus grandifolia. Castanea 30: 167–170.Google Scholar
  24. López M.L. and Cházaro B.M. 1995. Plantas leñosas raras del bosque mesófilo de montaña. I. Fagus mexicana Martínez (Fagaceae). Boletín de la Sociedad Botánica de México 57:113–115.Google Scholar
  25. Luna V.I., Almeida L., Villers L. and Lorenzo L. 1988. Reconocimiento florístico y consideraciones fitogeográficas del bosque mesófilo de montaña de Teocelo, Veracruz. Boletín de la Sociedad Botánica de México 48: 35–63.Google Scholar
  26. Luna V.I., Alcántara A.O., Espinosa O.D.E. and Morrone J.J. 1999. Historical relationships of the Mexican cloud forests: a preliminary vicariance model applying Parsimony Analysis of Endemicity to vascular plant taxa. J. Biogeogr. 26: 1299–1306.CrossRefGoogle Scholar
  27. Luna V.I., Alcántara A.O., Morrone J.J. and Espinosa O.D.E. 2000. Track analysis and conservation priorities in the cloud forests of Hidalgo, Mexico. Div. Distribut. 6: 137–143.CrossRefGoogle Scholar
  28. Luna V.I., Morrone J.J., Ayala A.O. and Organista D.E. 2001. Biogeographical affinities among Neotropical cloud forests. Plant Systemat. Evol. 228: 229–239.CrossRefGoogle Scholar
  29. Malda G.B. 1990. Plantas vasculares raras, amenazadas y en peligro de extinción en Tamaulipas. Biotam 2: 55–61.Google Scholar
  30. McNeely J.A., Gadgil M., Leveque C., Padoch C. and Reedford K. 1995. Human influences on Biodiversity. In: Heywood V.H. and Warton R.T. (eds), Global Diversity Assessment. Cambridge University Press, Cambridge, UK pp. 711–821.Google Scholar
  31. Moguel P. and Toledo M.V.M. 1999. Biodiversity conservation in traditional coffee systems of Mexico. Conserv. Biol. 13(1): 11–21.CrossRefGoogle Scholar
  32. Morrone J.J. and Crisci J.V. 1995. Historical biogeography: introduction to methods. Annu. Rev. Ecol. Systemat. 26: 373–401.CrossRefGoogle Scholar
  33. Morrone J.J. and Espinosa M.D. 1998. La relevancia de los atlas biogeográficos para la conservación de la biodiversidad mexicana. Ciencia (México) 49: 12–16.Google Scholar
  34. Nix H.A. 1986. A Biogeographic analysis of Australian elapid snakes. In: Longmore R. (ed.), Atlas of the Elapid snakes of Australia. Flora and Fauna. 7: 4–15.Google Scholar
  35. Neilson R.P. 1998. Simulation of regional climate change with global coupled climate models and regional modelling techniques. In: Watson R.T., Zinyowera M.C., Moss R.H. and Dokken D.J. (eds), The Regional Impacts of Climate Change: An Assessment of Vulnerability. Special Report of IPCC Working Group II. Cambridge University Press, Cambridge, UK, pp. 439–456.Google Scholar
  36. Oldfield S.F., Lusty C. and MacKinven A. 1998. The World List of Threatened Trees. World Conservation Press.Google Scholar
  37. Pearson R.G. and Dawson T.P. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol. Biogeogr. 12: 361–371.CrossRefGoogle Scholar
  38. Pérez P.M. 1994. Revisión sobre el conocimiento dendrológico, silvícola y un censo de las poblaciones actuales del género Fagus en México. Tesis de maestría (Biología). Facultad de Ciencias. Universidad Nacional Autónoma de México, México, DF, 146 pp.Google Scholar
  39. Pérez P.M. 1999. Las hayas de México.Monografía de Fagus grandifolia spp. mexicana. Universidad Autónoma Chapingo, Chapingo, México, 51 pp.Google Scholar
  40. Peterson A.T. and Vieglais D.A. 2001. Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. BioScience 51: 363–371.CrossRefGoogle Scholar
  41. Rzedowski J. 1996. Análisis preliminar de la flora vascular de los bosques mesófilos de montaña de México. Acta Botánica mexicana 35: 25–44.Google Scholar
  42. Pérez P.M. 1999. Las hayas de México.Monografísa de Fagus grandifolia spp. mexicana. Universidad Autónoma Chapingo, Chapingo, México, 51 pp.Google Scholar
  43. Shen C.F. 1992. A monography of the genus Fagus Tourn. ex. L. (Fagaceae). Dissertation, City University of New York, New York.Google Scholar
  44. Téllez V.O. and Dávila A.P. 2003. Protected areas and climate change: a case study of the cacti in the Tehuacán-Cuicatlán biosphere reserve, México. Conserv. Biol. 17(3): 846–853.CrossRefGoogle Scholar
  45. Vovides A.P., Luna V. and Medina G. 1997. Relación de algunas plantas y hongos mexicanos raros, amenazados o en peligro de extinción y sugerencias para su conservación. Acta Botánica Mexicana 39: 1–42.Google Scholar
  46. Webster G.L. 1995. The Panorama of Neotropical Cloud Forests. In: Churchill S.P., Balslev H., Forero E. and Luteyn J.L. (eds), Biodiversity and Conservation of Neotropical Montane Forestes. Proceedings of the Neotropical Montane Forest Biodiversity and Conservation Symposium. The New York Botanical Garden, 21–26 June 1993, New York, pp. 53–77.Google Scholar
  47. Williams L.G., Rowden A. and Newton A.C. 2003. Distribution and stand characteristics of relict populations of Mexican beech (Fagus grandifolia var mexicana). Biol. Conserv. 109: 27–36.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Oswaldo Téllez-Valdés
    • 1
  • Patricia Dávila-Aranda
    • 1
  • Rafael Lira-Saade
    • 1
  1. 1.Laboratorio de Recursos NaturalesUnidad de Biología, Tecnología y Prototipos, Facultad de Estudios Superiores Iztacala UNAM.Estado de MéxicoMéxico

Personalised recommendations