Reliability of cranial morphology in reconstructing Neanderthal phylogeny

  • K. Harvati
  • T. D. Weaver
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

The usefulness of cranial morphology in reconstructing the phylogeny of closely related taxa is often questioned due to the possibility of convergence or parallelism and epigenetic response to the environment. However, it has been suggested that different cranial regions preserve phylogenetic information differentially. Some parts of the face and neurocranium are thought to be relatively developmentally flexible, and therefore to be subject to the epigenetic influence of the environment. Other parts are thought to be particularly responsive to selection for adaptation to local climate. The basicranium, on the other hand, and in particular the temporal bone, is thought to be largely genetically determined and has been argued to preserve a strong phylogenetic signal with little possibility of homoplasy. Here we test the hypotheses that cranial morphology is related to population history among recent humans, and that different cranial regions reflect population history and local climate differentially. Morphological distances among ten recent human populations were calculated from the face, vault and temporal bone using three-dimensional geometric morphometrics methods. The distance matrices obtained were then compared to neutral genetic distances and to climatic differences among the same or closely matched groups. Results indicated a stronger relationship of the shape of the vault and the temporal bone with neutral genetic distances, and a stronger association of facial shape with climate. Vault and temporal bone centroid sizes were associated with climate and particularly temperature; facial centroid size was associated with genetic distances.


craniofacial morphology population history genetics climate phylogeny Neanderthals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, S.E., 2004. A morphometric analysis of maxillary molar crowns of Middle-Late Pleistocene hominins. J. Hum. Evol. 47, 183–198.CrossRefGoogle Scholar
  2. Beals, K.L., Smith, C.L., Dodd, S.M., 1983. Climate and the evolution of brachycephalization. Am. J. Phys. Anthropol. 62, 425–437.CrossRefGoogle Scholar
  3. Bookstein, F.L., 1990. Introduction to methods for landmark data. In: Rohlf, F.J., Bookstein, F.L. (Eds.), Proceedings of the Michigan Morphometrics Workshop. The University of Michigan Museum of Zoology, Ann Arbor, pp. 216–225.Google Scholar
  4. Bräuer, G., 1992. Africa’s place in the evolution of Homo sapiens. In: Bräuer, G., Smith, F.H. (Eds.), Continuity or Replacement: Controversies in Homo sapiens Evolution. A. A. Balkema, Rotterdam, pp. 83–98.Google Scholar
  5. Bräuer, G., Rimbach, K.W., 1990. Late archaic and modern Homo sapiens from Europe, Africa and Southwest Asia: Craniometric comparisons and phylogenetic implications. J. Hum. Evol. 19, 789–807.CrossRefGoogle Scholar
  6. Cann, H.M., de Toma, C., Cazes, L., Legrand, M.-F., Morel, V., Piouffre, L., Bodmer, J., Bodmer, W.F., Bonne-Tamir, B., Cambon-Thomsen, A., Chen, Z., Chu, J., Carcassi, C., Contu, L., Du, R., Excoffier, L., Friedlaender, J.S., Groot, H., Gurwitz, D., Herrera, R.J., Huang, X., Kidd, J., Kidd, K.K., Langaney, A., Lin, A.A., Mehdi, S.Q., Parham, P., Piazza, A., Pistillo, M.P., Qian, Y., Shu, Q., Xu, J., Zhu, S., Weber, J.L., Greely, H.T., Feldman, M.W., Thomas, G., Dausse t, J., Cavalli-Sforza, L.L., 2002. A human genome diversity cell line panel. Science 296, 261–262.CrossRefGoogle Scholar
  7. Collard, M., Wood, B., 2000. How reliable are human phylogenetic hypotheses? Proc. Natl. Acad. Sci. U.S.A. 97, 5003–5006.CrossRefGoogle Scholar
  8. Collard, M., Wood, B., 2001. Homoplasy and the early hominid masticatory system: inferences from analyses of extant hominoids and papioni. J. Hum. Evol. 41, 167–194.CrossRefGoogle Scholar
  9. Coon, C.S., Garn, S.M., Birdsell, J.B., 1950. Races: a study of the problems of race formation in man. Charles C. Thomas, Springfield, IL.Google Scholar
  10. Dryden, I.L., Mardia, K.V., 1998. Statistical Shape Analysis. John Wiley, New York.Google Scholar
  11. Goldstein, D.B., Linares, A.R., Cavalli-Sforza, L.L., Feldman, M.W., 1995a. An evaluation of genetic distances for use with microsatellite loci. Genetics 139, 463–471.Google Scholar
  12. Goldstein, D.B., Ruiz Linares, A., Cavalli-Sforza, L.L., Feldman, M.W., 1995b. Genetic absolute dating based on microsatellites and the origin of modern humans. Proc. Natl. Acad. Sci. U.S.A. 92, 6723–6727.CrossRefGoogle Scholar
  13. Harvati, K., 2001. The Neanderthal problem: 3-D geometric morphometric models of cranial shape variation within and among species. Ph.D. Dissertation, City University of New York, New York.Google Scholar
  14. Harvati, K., 2002. Models of shape variation between and within species and the Neanderthal taxonomic position: a 3D geometric morphometrics approach based on temporal bone morphology. BAR International Series 1049, Oxford, pp. 25–30.Google Scholar
  15. Harvati, K., 2003a. Quantitative analysis of Neanderthal temporal bone morphology using 3-D geometric morphometrics. Am. J. Phys. Anthropol. 120, 323–338.CrossRefGoogle Scholar
  16. Harvati, K., 2003b. The Neanderthal taxonomic position: models of intra- and inter-specific morphological variation. J. Hum. Evol. 44, 107–132.CrossRefGoogle Scholar
  17. Harvati, K., 2004. 3-D geometric morphometric analysis of temporal bone landmarks in Neanderthals and modern humans. In: Elewa, A.M.T. (Ed.), Morphometrics, Applications in Biology and Paleontology. Springer, Berlin, pp. 245–258.Google Scholar
  18. Harvati, K., Frost, S.R., McNulty, K.P., 2004. Neanderthal taxonomy reconsidered: Implications of 3D primate models of intra- and inter-specific differences. Proc. Natl. Acad. Sci. U.S.A. 101, 1147–1152.CrossRefGoogle Scholar
  19. Rohlf, F.J., 1999. Shape statistics: Procrustes superimpositions and tangent spaces. J. Classification 16, 197–223.CrossRefGoogle Scholar
  20. Rohlf, F.J., 2000. Statistical power comparisons among alternative morphometric methods. Am. J. Phys. Anthropol. 111, 463–478.CrossRefGoogle Scholar
  21. Rohlf, F.J., Marcus, L.F., 1993. A revolution in morphometrics. Trends Ecol. Evol. 8, 129–132.Google Scholar
  22. Roseman, C.C., 2004. Detection of interregionally diversifying natural selection on modern human cranial form by using matched molecular and morphometric data. Proc. Natl. Acad. Sci. U.S.A. 101, 12824–12829.CrossRefGoogle Scholar
  23. Roseman, C.C., Weaver, T.D., 2004. Multivariate apportionment of global human craniometric diversity. Am. J. Phys. Anthropol. 125, 257–263.CrossRefGoogle Scholar
  24. Rosenberg, N.A., Pritchard, J.K., Weber, J.L., Cann, H.M., Kidd, K.K., Zhivotovsky, L.A., Feldman, M.W., 2002. Genetic structure of human populations. Science 298, 2381–2385.CrossRefGoogle Scholar
  25. Shea, B.T., Leigh, S.R., Groves, C.P., 1993. Multivariate craniometric variation in chimpanzees: Implications for species identification. In: Kimbel, W.H., Martin, L.B. (Eds.), Species, Species Concepts and Primate Evolution. Plenum Press, New York, pp. 265–296.CrossRefGoogle Scholar
  26. Slatkin, M., 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics. 139, 457–462.Google Scholar
  27. Slice, D.E., 1994–1999 Morpheus et al.: Software for Morphometric Research. Department of Ecology and Evolution, State University of New York, Stony Brook, NY.Google Scholar
  28. Slice, D.E., 2001. Landmark coordinates aligned by Procrustes analysis do not lie in Kendall’s shape space. Syst. Biol. 50, 141–149.CrossRefGoogle Scholar
  29. Smith, F.H., 1983. Behavioral interpretations of changes in craniofacial morphology across the archaic/modern Homo sapiens transition. In: Trinkaus, E. (Ed.), The Mousterian Legacy: Human Biocultural Change in the Upper Pleistocene. BAR International Series, Oxford, pp. 141–163.Google Scholar
  30. Smouse, P.E., Long, J.C., Sokal, R.R., 1986. Multiple regression and correlation extensions of the Mantel Test of matrix correspondence. Syst. Zool. 35, 627–632.CrossRefGoogle Scholar
  31. Sokal, R.R., Rohlf, F.J., 1995. Biometry: The Principals and Practice of Statistics in Biological Research. W.H. Freeman, New York.Google Scholar
  32. Stringer, C.B., 1974. Population relationships of later Pleistocene hominids: a multivariate study of available crania. J. Archaeol. Sci. 1, 317–142.CrossRefGoogle Scholar
  33. Stringer, C.B., 1992. Reconstructing recent human evolution. Phil. Trans. Biol. Sci. 337, 217–224.CrossRefGoogle Scholar
  34. Valeri, C.J., Cole, T.H. III, Lele, S., Richtsmeier, J.T., 1998. Capturing data from three-dimensional surfaces using fuzzy landmarks. Am. J. Phys. Anthropol. 107, 113–124.CrossRefGoogle Scholar
  35. Wood, B., Lieberman, D.E., 2001. Craniodental variation in Paranthropus boisei: a developmental and functional perspective. Am. J. Phys. Anthropol. 116, 13–25CrossRefGoogle Scholar
  36. Zhivotovsky, L.A., Rosenberg, N.A., Feldman, M.W., 2003. Features of evolution and expansion of modern humans, inferred from genomewide microsatellite markers. Am. J. Hum. Genet. 72, 1171–1186.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • K. Harvati
    • 1
  • T. D. Weaver
    • 1
  1. 1.Max-Planck-Institut für Evolutionäre AnthropologieLeipzigGermany

Personalised recommendations