Selection Selection on mitochondrial DNA and the Neanderthal problem

  • J. Hawks
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

At present, the direct evidence for Neanderthal genetic variation and gene phylogeny is limited to the control region of the mitochondrial DNA (mtDNA). Neanderthal mtDNA sequences are divergent from those of recent humans. This fact, when coupled with the assumptions of selective neutrality and a recently expanding human population, argues for the complete and utter extinction of Neanderthals without living issue. But an alternative hypothesis is that human mtDNA has recently undergone an episode of positive selection, or a “selective sweep.” Five converging lines of evidence suggest that mtDNA has undergone recent positive selection: (1) mtDNA variants in living humans are associated with life history and metabolic traits that changed dramatically during recent human evolution; (2) Statistical tests show that the distribution of human mtDNA variation is clearly inconsistent with neutrality; (3) Nuclear genomic variation is not consistent with a single recent population expansion as necessary to explain human mtDNA variation; (4) A neutral mtDNA necessitates a population replacement to explain its pattern of variation, but many autosomal and X chromosomal loci show strong phylogeographic or genealogical evidence for the survival of archaic human gene lineages and therefore reject population replacement; and (5) Anatomical and archaeological evidence shows some degree of anatomical and behavioral continuity between Upper Paleolithic Neanderthals and later Europeans and likewise reject population replacement. The hypothesis of positive selection on mtDNA is in accord with recent estimates of genome-wide rates of selection and is contradicted by no known evidence. Molecular and comparative evidence further suggests that the current pattern of human mtDNA variation represents only the most recent episode of positive selection among many during human evolution. Selection on mtDNA cannot prove that other Neanderthal genomic lineages survived, although such survival may be suggested by other anatomical and genetic evidence. Nevertheless, the substantial probability of such selection renders Neanderthal mtDNA variation phylogenetically uninformative.

Keywords

Positive selection adaptation demographic inference molecular evolution selective sweep 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrose, S.H., 1998. Late Pleistocene human population bottlenecks, volcanic winter and differentiation of modern humans. J. Hum. Evol. 34, 623–652.CrossRefGoogle Scholar
  2. Arnason, U., Gullberg, A., Janke, A., Xu, X., 1996. Pattern and timing of evolutionary divergences among hominoids based on analyses of complete mtDNAs. J. Mol. Evol. 43, 650–661.CrossRefGoogle Scholar
  3. Baird, D.M., Coleman, J., Rosser, Z.H., Royle, N.J., 2000. High levels of sequence polymorphism and linkage disequilibrium at the telomere of 12q: implications for telomere biology and human evolution. Am. J. Hum. Genet. 66, 235–250.CrossRefGoogle Scholar
  4. Bar-Yosef, O., 2002. The Upper Paleolithic revolution. Ann. Rev. Anthropol. 31, 363–393.CrossRefGoogle Scholar
  5. Biraben, J.-N., 1979. Essai sur l’evolution du nombre des hommes. Population 1, 13–25.CrossRefGoogle Scholar
  6. Biraben, J.-N., 2003. Lévolution du nombre des hommes. Population et Sociétés 394, 1–4.Google Scholar
  7. Bräuer, G., 1984. A craniological appoach to the origin of anatomically modern Homo sapiens in Africa and implications for the appearance of modern Europeans. In: Smith, F.H., Spencer, F. (Eds.), The Origins of Modern Humans: A World Survey of the Fossil Evidence. Alan R. Liss, New York, pp. 327–410.Google Scholar
  8. Bräuer, G., Stringer, C., 1997. Models, polarization, and perspectives on modern human origins. In: Clark, G.A., Willermet, C.M. (Eds.), Conceptual Issues in Modern Human Origins Research. Aldine de Gruyter, New York, pp. 191–201.Google Scholar
  9. Bräuer, G., Collard, M., Stringer, C., 2004. On the reliability of recent tests of the Out of Africa hypothesis for modern human origins. Anat. Rec. 279A, 701–707.CrossRefGoogle Scholar
  10. Cann, R.L., Stoneking, M., Wilson, A.C., 1987. Mitochondrial DNA and human evolution. Nature 325, 31–36. CrossRefGoogle Scholar
  11. Caramelli, D., Lalueza-Fox, C., Vernesi, C., Lari, M., Casoli, A., Mallegni, F., Chiarelli, B., Dupanloup, I., Bertranpetit, J., Barbujani, G., Bertorelle, G., 2003. Evidence for a genetic discontinuity between Neandertals and 24,000-year-old anatomically modern Europeans. Proc. Natl. Acad. Sci. U.S.A. 100, 6593–6597.CrossRefGoogle Scholar
  12. Caspari, R., Lee, S.-H., 2004. Older age becomes common late in human evolution. Proc. Natl. Acad. Sci. U.S.A. 101, 10,895–10,900.CrossRefGoogle Scholar
  13. Coale, A.J., 1974. The history of the human population. Sci. Am. 231, 40–52.CrossRefGoogle Scholar
  14. Currat, M., Excoffier, L., 2004. Modern humans did not admix with Neanderthals during their range expansion into Europe. PLoS Biol. 2, e421.CrossRefGoogle Scholar
  15. Duarte, C., Maurício, J., Pettitt, P.B., Souto, P., Trinkaus, E., van der Plicht, H., Zilhão, J., 1999. The early Upper Paleolithic human skeleton from the Abrigo do Lagar Velho (Portugal) and modern human emergence in Iberia. Proc. Natl. Acad. Sci. U.S.A. 96, 7604–7609.CrossRefGoogle Scholar
  16. Enard, W., Przeworski, M., Fisher, S.E., Lai, C.S., Wiebe, V., Kitano, T., Monasco, A.P., Pääbo, S., 2002. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418, 869–872.CrossRefGoogle Scholar
  17. Eswaran, V., Harpending, H., Rogers, A.R., 2005. Genomics refutes an exclusively African origin of humans. J. Hum. Evol. 49, 1–154.CrossRefGoogle Scholar
  18. Fay, J.C., Wu, C.-I., 1999. A human population bottleneck can account for the discordance between patterns of mitochondrial versus nuclear DNA variation. Mol. Biol. Evol. 16, 1003–1005.CrossRefGoogle Scholar
  19. Fay, J.C., Wyckoff, G.J., Wu, C.-I., 2001. Positive and negative selection on the human genome. Genetics 158, 1227–1254.Google Scholar
  20. Foley, R.A., 1998. Genes, evolution and diversity: yet another look at the problem of modern human origins. Evol. Anthropol. 6, 191–193.CrossRefGoogle Scholar
  21. Frayer, D.W., 1993. Evolution at the European edge: Neanderthal and Upper Paleolithic relationships. Préhistoire Européenne 2, 9–69.Google Scholar
  22. Frayer, D.W., Wolpoff, M.H., Smith, F.H., Thorne, A.G., Pope, G.G., 1993. The fossil evidence for modern human origins. Am. Anthropol. 95, 14–50.CrossRefGoogle Scholar
  23. Garrigan, D., Mobasher, Z., Severson, T., Wilder, J.A., Hammer, M.F., 2005. Evidence for archaic Asian ancestry on the human X chromosome. Mol. Biol. Evol. 22, 189–192.CrossRefGoogle Scholar
  24. Gutiérrez, G., Sánchez, D., Marín, A., 2002. A reanalysis of the ancient mitochondrial DNA sequences recovered from Neandertal bones. Mol. Biol. Evol. 19, 1359–1366.CrossRefGoogle Scholar
  25. Haak, W., Forster, P., Bramanti, B., Matsumura, S., Brandt, G., Tänzer, M., Villems, R., Renfrew, C., Gronenborn, D., Alt, K.W., Burger, J., 2005. Ancient DNA from the first European farmers in 7500-year-old Neolithic sites. Science 310, 1016–1018.Google Scholar
  26. Hardy, J., Pittman, A., Myers, A., Gwinn-Hardy, K., Fung, H.C., de Silva, R., Hutton, M., Duckworth, J., 2005. Evidence suggesting that Homo neanderthalensis contributed the H2 MAPT haplotype to Homo sapiens. Biochem. Soc. Trans. 33, 582–585.CrossRefGoogle Scholar
  27. Harpending, H., Rogers, A., 2000. Genetic perspectives on human origins and differentiation. Ann. Rev. Genomics Hum. Genet. 1, 361–385.CrossRefGoogle Scholar
  28. Harpending, H.C., Sherry, S.T., Rogers, A.R., Stoneking, M., 1993. The genetic structure of ancient human populations. Curr. Anthropol. 34, 483–496.CrossRefGoogle Scholar
  29. Harpending, H.C., Batzer, M.A., Gurven, M., Jorde, L.B., Rogers, A.R., Sherry, S.T., 1998. Genetic traces of ancient demography. Proc. Natl. Acad. Sci. U.S.A. 95, 1961–1967.CrossRefGoogle Scholar
  30. Hawks, J., Wolpoff, M.H., 2001. Paleoanthropology and the population genetics of ancient genes. Am. J. Phys. Anthropol. 114, 269–272.CrossRefGoogle Scholar
  31. Hawks, J., Hunley, K., Lee, S.-H., Wolpoff, M.H., 2000a. Bottlenecks and Pleistocene human evolution. Mol. Biol. Evol. 17, 2–22.CrossRefGoogle Scholar
  32. Hawks, J., Oh, S., Hunley, K., Dobson, S., Cabana, G., Dayalu, P., Wolpoff, M.H., 2000b. An Australasian test of the recent African origin theory using the WLH-50 calvarium. J. Hum. Evol. 39, 1–22.CrossRefGoogle Scholar
  33. Hawks, J.D., 1999. The evolution of human population size: A synthesis of fossil, archaeological, and genetic data. Ph.D. Dissertation, University of Michigan, Ann Arbor, MI.Google Scholar
  34. Howell, N., Kubacka, I., Mackey, D., 1996. How rapidly does the human mitochondrial genome evolve? Am. J. Hum. Genet. 59, 501–509.Google Scholar
  35. Howells, W.W., 1942. Fossil man and the origin of races. Am. Anthropol. 44, 182–193.CrossRefGoogle Scholar
  36. Jorde, L.B., Bamshad, M., Rogers, A.R., 1998. Using mitochondrial and nuclear DNA markers to reconstruct human evolution. BioEssays 20, 126–136.CrossRefGoogle Scholar
  37. Kimmel, M., Chakraborty, R., King, J., Bamshad, M., Watkins, W., Jorde, L.B., 1997. Signatures of population expansion in microsatellite repeat data. Genetics 148, 1921–1930.Google Scholar
  38. Kivisild, T., Shen, P., Wall, D.P., Do, B., Sung, R., Davis, K.K., Passarino, G., Underhill, P.A., Scharfe, C., Torroni, A., Scozzari, R., Modiano, D., Coppa, A., deKnjiff, P., Feldman, M.W., Cavalli-Sforza, L.L., Oefner, P.J., 2006. The role of selection in the evolution of human mitochondrial genomes. Genetics 172, 373–387.CrossRefGoogle Scholar
  39. Klein, R., 1999. The Human Career: Human Biological and Cultural Origins. 2nd Edition. University of Chicago Press, Chicago.Google Scholar
  40. Klein, R., Edgar, B., 2002. The Dawn of Human Culture. John Wiley and Sons, New York.Google Scholar
  41. Knight, A., 2003. The phylogenetic relationship of Neandertal and modern human mitochondrial DNAs based on informative nucleotide sites. J. Hum. Evol. 44, 627–632.CrossRefGoogle Scholar
  42. Kreitman, M., 2000. Methods to detect selection in populations with applications to the human. Ann. Rev. Genom. Hum. Genet. 1, 539–559.CrossRefGoogle Scholar
  43. Krings, M., Stone, A., Schmitz, R.W., Krainitzid, H., Stoneking, M., Pääbo, S., 1997. Neandertal DNA sequences and the origin of modern humans. Cell 90, 1–20.CrossRefGoogle Scholar
  44. Krings, M., Geisert, H., Schmitz, R.W., Krainitzki, S.P., 1999. DNA sequence of the mitochondrial hypervariable region ii from the Neandertal type specimen. Proc. Natl. Acad. Sci. U.S.A. 96, 5581–5585.CrossRefGoogle Scholar
  45. Krings, M., Capelli, C., Tachentacher, F., Geisert, H., Meyer, S., von Haeseler, A., Grossschmidt, K., Possnert, G., Paunovic, M., Pääbo, S., 2000. A view of neandertal genetic diversity. Nat. Genet. 26, 144–146.CrossRefGoogle Scholar
  46. Lahr, M.M., 1996. The Evolution of Modern Human Diversity: A Study of Cranial Variation.Google Scholar
  47. Lowell, B.B., Shulman, G.I., 2005. Mitochondrial dysfunction and Type 2 diabetes. Science 307, 384–397.CrossRefGoogle Scholar
  48. Macaulay, V., Hill, C., Achilli, A., Rengo, C., Clarke, D., Meehan, W., Blackburn, J., Semino, O., Scozzari, R., Cruciani, F., Taha, A., Shaari, N.K., Raha, J.M., Ismail, P., Zainuddin, Z., Goodwin, W., Bulbeck, D., Bandelt, H.-J., Oppenheimer, S., Torroni, A., Richards, M., 2005. Single, rapid coastal settlement of Asia revealed by analysis of complete mitochondrial genomes. Science 308, 1034–1036.CrossRefGoogle Scholar
  49. Manderscheid, E.J., Rogers, A.R., 1996. Genetic admixture in the Late Pleistocene. Am. J. Phys. Anthropol. 100, 1–5.CrossRefGoogle Scholar
  50. Marth, G.T., Czabarka, E., Murvai, J., Sherry, S.T., 2004. The allele frequency spectrum in genomewide human variation data reveals signals of differential demographic history in three large world populations. Genetics 166, 351–372.CrossRefGoogle Scholar
  51. McDonald, J.H., Kreitman, M., 1991. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654.CrossRefGoogle Scholar
  52. Merriwether, D., Clark, A.G., Ballinger, S.W., Schurr, T.G., Soodyall, H., Jenkins, T., Sherry, S.T., Wallace, D.C., 1991. The structure of human mitochondrial DNA variation. J. Mol. Evol. 33, 543–555.CrossRefGoogle Scholar
  53. Mishmar, D., Ruiz-Pesini, E., Golik, P., Macaulay, V., Clark, A.G., Hosseini, S., Brandon, M., Easley, K., Chen, E., Brown, M.D., Sukernik, R.I., Olckers, A., Wallace, D.C., 2003. Natural selection shaped regional mtDNA variation in humans. Proc. Natl. Acad. Sci. U.S.A. 100, 171–176.CrossRefGoogle Scholar
  54. Niemi, A.-K., Majamaa, K., 2005. Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur. J. Hum. Genet. 13, 965–969.CrossRefGoogle Scholar
  55. Niemi, A.-K., Moilanen, J.S., Tanaka, M., Hervonen, A., Hurme, M., Lehtimäki, T., Arai, Y., Hirose, N., Majamaa, K., 2005. A combination of three common inherited itochondrialDNApolymorphisms promotes longevity in Finnish and Japanese subjects. Eur. J. Hum. Genet. 13, 166–170.CrossRefGoogle Scholar
  56. Nordborg, M., 1998. On the probability of Neanderthal ancestry. Am. J. Hum. Genet. 63, 1237–1240.CrossRefGoogle Scholar
  57. Pearson, O., 2003. Has the combination of genetic and fossil evidence solved the riddle of modern human origins? Evol. Anthropol. 13, 145–159.CrossRefGoogle Scholar
  58. Protsch, R.R., 1975. The absolute dating of Upper Pleistocene sub-Saharan fossil hominids and their place in human evolution. J. Hum. Evol. 4, 297–322.CrossRefGoogle Scholar
  59. Przeworski, M., Hudson, R.R., DiRienzo, A., 2000. Adjusting the focus on human variation. Trends Genet. 16, 296–302.CrossRefGoogle Scholar
  60. Ptak, S.E., Przeworski, M., 2002. Evidence for population growth in humans is confounded by fine-scale population structure. Trends Genet. 18, 559–563.CrossRefGoogle Scholar
  61. Richards, M., 2003. The Neolithic invasion of Europe. Ann. Rev. Anthropol. 32, 135–162.CrossRefGoogle Scholar
  62. Ruiz-Pesini, E., Mishmar, D., Brandon, M., Procaccio, V., Wallace, D.C., 2004. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303, 223–226.CrossRefGoogle Scholar
  63. Serre, D., Langaney, A., Chech, M., Teschler-Nicola, M., Paunovic, M., Mennecier, P., Hofreiter, M., Possnert, G., Pääbo, S., 2004. No evidence of Neandertal mtDNA contribution to early modern humans. PLoS Biol. 2, 313–317.CrossRefGoogle Scholar
  64. Sherry, S.T., Rogers, A.R., Harpending, H., Soodyall, H., Jenkins, T., Stoneking, M., 1994. Mismatch distribution of mtDNA reveal recent human population expansions. Hum. Biol. 66, 761–775.Google Scholar
  65. Soffer, O., 2004. Recovering perishable technologies through use wear on tools: Preliminary evidence for Upper Paleolithic weaving and net making. Curr. Anthropol. 45, 407–413.CrossRefGoogle Scholar
  66. Spuhler, J.N., 1989. Evolution of mitochondrial DNA in human and other organisms. Am. J. Hum. Biol. 1, 509–528.CrossRefGoogle Scholar
  67. Stefansson, H., Helgason, A., Steinthorsdottir, G.T.V., Masson, G., Bernard, J., Baker, A., Jonasdottir, A., Ingason, A., Gudnadottir, V.G., Desnica, N., Hicks, A., Gylfason, A., Gudbjartsson, D.F., Jonsdottir, G.M., Sainz, J., Agnarsson, K., Birgisdottir, B., Ghosh, S., Olafsdottir, A., Cazier, J.-B., Kristjansson, K., Frigge, M.L., Thorgeirsson, T.E., Gulcher, J.R., Kong, A., Stefansson, K., 2005. A common inversion under selection in Europeans. Nat. Genet. 37, 129–137.CrossRefGoogle Scholar
  68. Stiner, M.C., Munro, N.D., Surovell, T.A., 2000. The tortoise and the hare: Small-game use, the broad-spectrum revolution, and Paleolithic demography. Curr. Anthropol. 41, 39–73.CrossRefGoogle Scholar
  69. Stringer, C., 2002. Modern human origins: Progress and prospects. Phil. Trans. R. Soc. Lond. B 357, 563–579.CrossRefGoogle Scholar
  70. Stringer, C.B., Andrews, P., 1988. Genetic and fossil evidence for the origin of modern humans. Science 239, 1263–1268.CrossRefGoogle Scholar
  71. Stringer, C.B., Bräuer, G., 1994. Methods, misreading and bias. Am. Anthropol. 96, 416–424.CrossRefGoogle Scholar
  72. Tattersall, I., Schwartz, J.H., 1999. Hominids and hybrids: The place of Neanderthals in human evolution. Proc. Natl. Acad. Sci. U.S.A. 96, 7117–7119.CrossRefGoogle Scholar
  73. Templeton, A., 1993. The “Eve” hypothesis: a genetic critique and reanalysis. Am. Anthropol. 95, 51–72.CrossRefGoogle Scholar
  74. Templeton, A.R., 2002. Out of Africa again and again. Nature 416, 45–51.CrossRefGoogle Scholar
  75. Tishkoff, S.A., Dietzsch, E., Seed, W., Pakstis, A.J., Kidd, J.R., Cheung, K., Bonné-Tamir, B., Santachiara-Benerecetti, A.S., Moral, P., Krings, M., Pääbo, S., Watson, E., Risch, N., Jenkins, T., Kidd, K.K., 1996. Global patterns of disequilibrium at the CD4 locus and modern human origins. Science 271, 1380–1387.CrossRefGoogle Scholar
  76. Trinkaus, E., 2005. Early modern humans. Ann. Rev. Anthropol. 34, 207–230.CrossRefGoogle Scholar
  77. Trinkaus, E., Milota, S., Rodrigo, R., Mircea, G., Moldovan, O., 2003. Early modern human cranial remains from the Peştera cu Oase, Romania. J. Hum. Evol. 45, 245–253.CrossRefGoogle Scholar
  78. Vallender, E.J., Lahn, B.T., 2004. Positive selection on the human genome. Hum. Mol. Genet. 13, R245–R254.CrossRefGoogle Scholar
  79. Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K., Wilson, A.C., 1991. African populations and the evolution of human mitochondrial DNA. Science 253, 1503–1507.CrossRefGoogle Scholar
  80. Wall, J.D., 2000. Detecting ancient admixture in humans using sequence polymorphism data. Genetics 154, 1271–1279.Google Scholar
  81. Wallace, D.C., 2005a. The mitochondrial genome in human adaptive radiation and disease: on the road to therapeutics and performance enhancement. Gene 354, 169–180.CrossRefGoogle Scholar
  82. Wallace, D.C., 2005b. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Ann. Rev. Genet. 39, 359–407.CrossRefGoogle Scholar
  83. Wallace, D.C., Lott, M.T., 2002. Mitochondrial genes in degenerative diseases, cancer, and aging. In: Rimoin, D.L., Connor, J.M., Pyeritz, R.E., Korf, B.R. (Eds.), Emery and Rimoin’s Principles and Practice of Medical. Churchill Livingstone, London, pp. 299–409.Google Scholar
  84. Wallace, D.C., Brown, M.D., Lott, M.T., 1999. Mitochondrial DNA variation in human evolution and disease. Gene 238, 211–230.CrossRefGoogle Scholar
  85. Wallace, D.C., Lott, M.T., Brown, M.D., Kerstann, K., 2001. Mitochondria and neuro-opthalmological diseases. In: Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D. (Eds.), The Metabolic and Molecular Basis of Inherited Disease, Vol. 2. McGraw-Hill, New York, pp. 2425–2512.Google Scholar
  86. Weaver, T.D., Roseman, C.C., 2005. Ancient DNA, late Neandertal survival, and modern-human-Neandertal genetic admixture. Curr. Anthropol. 46, 677–683.CrossRefGoogle Scholar
  87. Williamson, S.H., Hernandez, R., Fledel-Alon, A., Zhu, L., Nielsen, R., Bustamante, C.D., 2005. Simultaneous inference of selection and population growth from patterns of variation in the human genome. Proc. Natl. Acad. Sci. U.S.A. 102, 7882–7887.CrossRefGoogle Scholar
  88. Wills, C., 1995. When did Eve live? An evolutionary detective story. Evolution 49, 593–607.CrossRefGoogle Scholar
  89. Wilson, A.C., Cann, R.L., 1992. The recent African genesis of humans. Sci. Am. 266, 68–73.Google Scholar
  90. Wise, C.A., Sraml, M., Rubinsztein, D.C., Easteal, S., 1997. Comparative nuclear and mitochondrial genome diversity in humans and chimpanzees. Mol. Biol. Evol. 14, 707–716.CrossRefGoogle Scholar
  91. Wise, C.A., Sraml, M., Easteal, S., 1998. Departure from neutrality at the mitochondrial NADH dehydrogenase subunit 2 gene in humans, but not in chimpanzees. Genetics 148, 409–421.Google Scholar
  92. Wolpoff, M.H., Hawks, J., Frayer, D.W., Hunley, K., 2001. Modern human ancestry at the peripheries: a test of the replacement theory. Science 291, 293–297.CrossRefGoogle Scholar
  93. Yellen, J.E., Brooks, A., Cornelissen, E., Mehlman, M., Stewart, K., 1995. A Middle Stone Age worked bone industry from Katanda, Upper Semiliki Valley, Zaire. Science 268, 553–556.CrossRefGoogle Scholar
  94. Zhivotovsky, L.A., Bennett, L., Bowcock, A.M., Feldman, M.W., 2000. Human population expansion and microsatellite variation. Mol. Biol. Evol. 17, 757–767.CrossRefGoogle Scholar
  95. Zhivotovsky, L.A., Rosenberg, N.A., Feldman, M.W., 2003. Features of evolution and expansion of modern humans, inferred from genomewide microsatellite markers. Am. J. Hum. Genet. 72, 1171–1186.CrossRefGoogle Scholar
  96. Zhu, X., Smith, M.A., Perry, G., Aliev, G., 2004. Mitochondrial failures in Alzheimer’s disease. Am. J. Alzheimer’s Dis. Other Dementias 19, 345–352.CrossRefGoogle Scholar
  97. Zischler, H., Geisert, H., von Haeseler, A., Pääbo, S., 1995. A nuclear “fossil” of the mitochondrial D-loop and the origin of modern humans. Nature 378, 489–492.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • J. Hawks
    • 1
  1. 1.Department of AnthropologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations