Learning and Teaching about Ecosystems Based on Systems Thinking and Modelling in an Authentic Practice

  • René Westra
  • Kerst Boersma
  • Arend J. Waarlo
  • Elwin Savelsbergh


This paper is a report on educational design research concerning learning and teaching contemporary ecology. To be able to understand ecosystem behaviour as derived from a complex and dynamic view, learning and teaching systems thinking and modelling skills is essential. To accomplish context-based ecology education, a cultural-historical approach was chosen, using three authentic social practices in which ecology is involved. A sequence of learning and teaching activities was thought out, elaborated and tested in classrooms. Throughout the field test the learning and teaching process was monitored in detail using various data sources. The results show that the students acquired basic systems thinking; they were able to articulate similarities and differences between the levels of biological organization (individual, population, and ecosystem). In addition, they understood which factors are crucial in an ecosystem and how they work, in particular how they impact quantitatively on each other. Most students were able to explore the required computer models. However, for most of them it remained problematic to build models themselves


Authentic practices Complexity Cultural historical approach Developmental research Dynamics Ecosystem Modelling Systems thinking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barman, C., Griffiths, A. K. & Okebukola, P. A. O. (1995). High school students’ concepts regarding food chains and food webs: A multinational study. International Journal of Science Education, 17, 775–782.CrossRefGoogle Scholar
  2. Bennett, J. & Holman, J. (2002). Context-based approaches to the teaching of chemistry: What are they and what are their effects? (In J. K. Gilbert, R. Justi, D. F. Treagust & J. H. Van Driel (Eds.), Chemical Education: Towards Research-Based Practice (pp. 165–184). Dordrecht: Kluwer Academic publishers.)Google Scholar
  3. Blanck, G. (1990). Vygotsky: The man and his cause. (In L. C. Moll (Ed.), Vygotsky and Education (pp. 31–58). Cambridge: Cambridge University Press.)Google Scholar
  4. Boersma, K. Th. (1997). Systeemdenken en zelfsturing in het biologieonderwijs. Utrecht: University (inaugural lecture).Google Scholar
  5. Boersma, K. Th. (2004, June). Sleutelbegrippen en handelingspraktijken in biologieonderwijs van 4 tot 18. (Paper presented at the ORD 9, Utrecht)Google Scholar
  6. Boersma, K. Th., van Graft, M., Harteveld, A., de Hullu, E., van den Oever, L. & van der Zande, P. A. M. (2005). Basisdocument van de Commissie Vernieuwing Biologieonderwijs over ontwikkeling en invoering van samenhangend biologieonderwijs. Utrecht: CVBO.Google Scholar
  7. Bulte, A. M. W., Westbroek, H. B., Van Rens, L. & Pilot, A. (2004). Involving students in meaningful chemistry education by adapting authentic practices. (In B. Ralle & I. Eilks (Eds.), Quality in Practice-Oriented Research in Science Education (pp. 105–116), Aachen: Shaker)Google Scholar
  8. De Ruiter, P. C., Wolters, V., Moore, J. C. & Winemiller, K. O. (2005). Food web ecology: Playing Jenga and beyond. Science, 309, 68–70.CrossRefGoogle Scholar
  9. Gell-Mann, M. (1995). The Quark and the Jaguar. [Adventures in the Simple and the Complex]. London: Little, Brown and Company.Google Scholar
  10. Grosslight, L., Unger, C., Jay, E. & Smith, C. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799–822.CrossRefGoogle Scholar
  11. Hedegaard, M. (2001). Learning and Child Development. Aarhus: Aarhus Universitetsforlag.Google Scholar
  12. Herman, P. M. J. (2004). MABENE-veldcampagne in de Oosterschelde. Retrieved from http:// www.nioo.knaw.nl/news/pdf/mabene2004.pdfGoogle Scholar
  13. Hogan, K. (2000). Assessing students’ systems reasoning in ecology. Journal of Biological Education, 35(1), 22–28.Google Scholar
  14. Hogan, K. & Thomas, D. (2001). Cognitive comparisons of students’ systems modeling in Ecology. Journal of Science Education and Technology, 10(4), 319–345.CrossRefGoogle Scholar
  15. Holling, C. S. (1987). Simplifying the complex; the paradigms of ecological function and structure. European Journal of Operational Research, 30, 139–146.CrossRefGoogle Scholar
  16. Jørgensen, S. E. & Bendoricchio, G. (2001). Fundamentals of Ecological Modelling. Amsterdam: Elsevier.Google Scholar
  17. Kattmann, U. (1977). Bezugspunkt Mensch [Grundlegung einer humanzentrierten Strukturierung des Biologieunterrichts]. Köln: Aulis Verlag Deubner & Co KG.Google Scholar
  18. Kurtz dos Santos, A. C. & Ogborn, J. (1994). Sixth form students’ ability to engage in computational modeling. Journal of Computer Assisted Learning, 10, 182–200.Google Scholar
  19. Lijnse, P. L. (1995). ‘Developmental research’ as a way to an empirically based ‘didactical structure’ of science. Science Education, 79(2), 189–199.CrossRefGoogle Scholar
  20. Lijnse, P. L. & Klaassen, C. J. W. M. (2004). Didactical structures as an outcome of research on teaching-learning sequences? International Journal of Science Education, 26(5), 537–554.CrossRefGoogle Scholar
  21. Louca, L., Druin, A., Hammer, D. & Dreher, D. (2003). Students’ collaborative use of computer-based programming tools in science: A descriptive study. (In B. Wassen, S. Ludvigsen & U. Hoppe (Eds.), Designing for Change (pp. 109–118). Dordrecht: Kluwer Academic publishers.)Google Scholar
  22. Magntorn, O. & Helldén, G. (2003, August). The Development of Student Teachers’Understanding of Ecosystems During a Course-Their Views. (Paper presented at the ESERA, Noordwijkerhout)Google Scholar
  23. Munson, B. H. (1994). Ecological misconceptions. Journal of Environmental Education, 25(4), 30–34.CrossRefGoogle Scholar
  24. Neutel, A. M. (2001). Stability of Complex Food Webs [Pyramids of Biomass, Interaction of Strengths and the Weight of Trophic Loops]. Utrecht (dissertation).Google Scholar
  25. Schaefer, G. (1989). Systems Thinking in Biology Education (vol. 33). Paris: Unesco.Google Scholar
  26. Van Oers, B. (1987). Activiteit en begrip. Proeve van een handelingspsychologische didactiek. Amsterdam: VU-uitgeverij (dissertation).Google Scholar
  27. Van Oers, B. (1998). From context to contextualizing. Learning and Instruction, 8(6), 473–488.CrossRefGoogle Scholar
  28. Van Weelie, D. (2001). Contextualizing biodiversity. (In O. de Jong, E. R. Savelsbergh & A. Alblas (Eds.), Teaching for Scientific Literacy. Context, Competency, and Curriculum (pp. 99–116). Utrecht: CDß-Press.)Google Scholar
  29. Verhoeff, R. P. (2003). Towards Systems Thinking in Cell Biology Education. Utrecht: CDß-Press (dissertation).Google Scholar
  30. Westra, R. H. V., Savelsbergh, E. R., Kortland, K., Prins, G. T. & Mooldijk, A. H. (2002). Leren door zelf modelleren: Constructief en uitdagend onderwijs. NVOX, 27(7), 331–334.Google Scholar
  31. Zaraza, R. (1995). Systems thinking in the classroom. Curriculum Technology Quarterly. Retrieved from http://www.ascd.org/publications/ctq/1995fall/zaraza.htmlGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • René Westra
  • Kerst Boersma
  • Arend J. Waarlo
  • Elwin Savelsbergh

There are no affiliations available

Personalised recommendations