An Outline of Magnetoelectrochemistry

  • Antoine Alemany
  • Jean-Paul Chopart
Part of the Fluid Mechanics And Its Applications book series (FMIA, volume 80)

Magnetoelectrochemistry (MEC) is electrochemistry in the presence of an imposed magnetic field. This relatively new branch of electrochemistry has seen rapid development during the last years [1], the potential applications being very promising even if not industrially realized up to now. Several studies have been performed with the objective to elucidate the effect of a magnetic field on the electrolyte properties, on the mass transfer processes and, at a smaller scale, on the electrochemical kinetics and on the structure and quality of the deposit.


Natural Convection Rayleigh Number Forced Convection Electromagnetic Force Sherwood Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A bibliographic investigation (CAPLUS) on the effect of the magnetic field in electrochemistry leads to 20 articles published before 1940. The annual article average number is 7 for the seventies and the eighties, 20 for the nineties and more than 30 for the first years of the new century.Google Scholar
  2. 2.
    Fahidy TZ (1983) Magnetoelectrolysis. J Appl Electrochem 13:553-563CrossRefGoogle Scholar
  3. 3.
    Ulrich T, Steiner E (1989) Magnetic field effects in chemical kinetics and related phenomena. Chem Rev 89:51-147CrossRefGoogle Scholar
  4. 4.
    Tronel-Peyroz E, Olivier A (1982) Application of the Boltzman equation to the study of electrolytic solution in the presence of electric and magnetic fields. Physico-Chemical Hydrodynamics 3:251-265Google Scholar
  5. 5.
    Tronel-Peyroz E, Olivier A, Fahidy TZ, Laforgue-Kantzer D (1976) Effet thermo-magnétoélectrique en solution électrolytiques. Electrochimica Acta 19:835-840Google Scholar
  6. 6.
    Levich VG (1974) Physicochemical Hydrodynamics. Prentice Hall, Englewood Cliffs, NYGoogle Scholar
  7. 7.
    Ngo Boum G (1998) Etude numérique du transport de matière au sein d’un électrolyte: Effet d’un champ magnétique. Thèse INPG, FranceGoogle Scholar
  8. 8.
    Ngo Boum GB, Alemany A (1999) Numerical simulation of electrochemical mass transfer in electromagnetically forced channel flows. Elecrochimica Acta 44:1749-1760CrossRefGoogle Scholar
  9. 9.
    Aogaki R, Fueki K, Mukaibo T (1976) Diffusion process in viscous flow of electrolyte solution in magnetohydrodynamic pumps electrodes. Denki Kagaku 44:89-94Google Scholar
  10. 10.
    Mori S, Satoh K, Takeushi M (1994) Electrolytic mass transfer around inclined cylinder in static magnetic field. Electrochimica Acta 39:2789-2794CrossRefGoogle Scholar
  11. 11.
    Mollet L, Dumargue P, Daguenet M, Bodiot D (1974) Calcul du flux limite de diffusion sur une microélectrode de section circulaire - équivalence avec une électrode de section rectangulaire. Vérification expérimentale dans le cas du disque tournant en régime laminaire. Electrochimica Acta 19:841-844CrossRefGoogle Scholar
  12. 12.
    Aaboubi A, Chopart JP, Douglade J, Olivier A, Gabrielli C, Tribollet B (1990) Magnetic field effects on mass transport. J Electrochem Soc 137:1796-1804CrossRefGoogle Scholar
  13. 13.
    Olivier A, Chopart JP, Amblard J, Merienne E, Aaboubi O (2000) Direct and indirect electrokinetic effect inducing a forced convection. EKHD and MHD transfer functions. ACH - Models in chemistry 137:213-224Google Scholar
  14. 14.
    Sugiyama A, Morisaki S, Mogi I, Aogaki R (2000) Application of cyclic magne-tammetry to the analysis of electrochemical reaction in a high magnetic field. Electrochemistry 68:771-778Google Scholar
  15. 15.
    Olivier A, Chopart JP, Douglade J, Gabrielli C, Tribollet B (1987) Frequency response of the limiting diffusion current to a magnetic field perturbation. J Elec-troanal Chem 227:275-279CrossRefGoogle Scholar
  16. 16.
    Devos O, Aaboubi A, Chopart JP, Merienne E, Olivier A, Amblard J (1998) Magnetic field effects on nickel electrodeposition. J Electrochem Soc 145:4136-4139Google Scholar
  17. 17.
    Devos O, Aaboubi A, Chopart JP, Olivier Merienne E, (1999) Magnetic impedance method: the MHD transfer function. Electrochemistry 67:181-187Google Scholar
  18. 18.
    Gurniki F, Brak FH, Zahrai S (2000) Large-eddy simulation of electrochemical mass transfer. In: Proceedings of the pamir International Conference, Giens, France, pp 1: 327-332Google Scholar
  19. 19.
    Devos O, Aaboubi O, Chopart JP, Olivier A (2000) Is there a magnetic field effect on electrochemical kinetics. J Phys Chem A104:1544-1548Google Scholar
  20. 20.
    Fricoteaux P, Jonvel B, Chopart JP (2003) Magnetic effect during copper elec-trodeposition: diffusion process considerations. J Phys Chem B107:9459-9464Google Scholar
  21. 21.
    Fahidy TZ (2001) Characteristics of surfaces produced via magnetoelectrolytic deposition. Prog Surf Sci 68:155-188CrossRefGoogle Scholar
  22. 22.
    Coey JMD, Hinds G (2001) Magnetic electrodeposition. J Alloys Compd 326: 238-245CrossRefGoogle Scholar
  23. 23.
    Uhlemann M, Schlörb H, Msellak K, Chopart JP (2004) Electrochemical depo-sition of Cu under superimposition of high magnetic fields. J Electrochem Soc 151:C598-C603CrossRefGoogle Scholar
  24. 24.
    Krause A, Hamann C, Uhlemann M, Gebert A, Schultz L (2005) Influence of a magnetic field on the morphology of electrodeposited cobalt. J Magn Magn Mater 290-291:261-264CrossRefGoogle Scholar
  25. 25.
    Bodea S, Ballou R, Molho P (2004) Electrochemical growth of iron and cobalt arborescences under a magnetic field. Phys Rev E69: 021605/1-021605/12Google Scholar
  26. 26.
    Heresanu V, Ballou R, Molho P (2001) Magnetic properties of Fe arborescences grown by electrodeposition. J Magn Magn Mater 226-230:1978-1980CrossRefGoogle Scholar
  27. 27.
    Msellak K, Chopart JP, Jbara O, Aaboubi O, Amblard J (2004) Magnetic field effects on Ni-Fe alloys codeposition. J Magn Magn Mater 281:295-304CrossRefGoogle Scholar
  28. 28.
    Harrach A, Douglade J, Dupuis M, Amblard J, Chopart JP (2005) Characteri-sation of Co-Fe alloys electrodeposited with magnetic field superimposition. In: Proceedings of the Joint 15th and 6th Pamir International Conference, Riga 2: pp 155-158Google Scholar
  29. 29.
    Mogi I, Watanabe K (2005) Chirality of magnetoelectropolymerized polyaniline electrodes. Jpn J Appl Phys 44:L199-L201CrossRefGoogle Scholar
  30. 30.
    Mogi I, Watanabe K (2005) Chiral electrodes of magneto-electropolymerized polyanilines films. In: Proceedings of the Joint 15th and 6th Pamir International Conference, Riga 2: pp 127-130Google Scholar
  31. 31.
    Hinds G Coey JMD, Lyons MEG (2001) Influence of magnetic forces on elec-trochemical mass transport. Electrochem Com 3:215-218CrossRefGoogle Scholar
  32. 32.
    Rabah LK, Chopart JP, Schloerb H, Saulnier S, Aaboubi O, Uhlemann M, Elmi D, Amblard J (2004) Analysis of the magnetic force effect on paramagnetic species. J Electroanal Chem 571:85-91CrossRefGoogle Scholar
  33. 33.
    Leventis N, Dass A (2005) Demonstration of the elusive concentration-gradient paramagnetic force. J Am Chem Soc 127:4988-4989CrossRefGoogle Scholar
  34. 34.
    Olivas P, Alemany A, Bark F (2004) Electromagnetic control of electroplating of a cylinder in forced convection. J Appl Electrochem 34:19-30CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Antoine Alemany
    • 1
  • Jean-Paul Chopart
    • 2
  1. 1.Pamir team, LEGIDomaine universitaireFrance
  2. 2.DTIUFR SciencesFrance

Personalised recommendations