Velocity Measurement Techniques for Liquid Metal Flows

  • Sven Eckert
  • Andreas Cramer
  • Gunter Gerbeth
Part of the Fluid Mechanics And Its Applications book series (FMIA, volume 80)

Analysis and control of fluid flows, often subsidiary to industrial design issues, require measurements of the flow field. For classical transparent fluids such as water or gas a variety of well-developed techniques (laser Doppler and particle image velocimetry, Schlieren optics, interferometric techniques, etc.) have been established. In contrast, the situation regarding opaque liquids still lacks almost any commercial availability. Metallic and semiconductor melts often pose additional problems of high temperature and chemical aggressiveness, rendering any reliable determination of the flow field a challenging task. This review intends to summarise different approaches suitable for velocity measurements in liquid metal flows and to discuss perspectives, particularly in view of some recent developments (ultrasound, magnetic tomography). Focusing mainly on local velocity measurements, it is subsequently distinguished between invasive and non-invasive methods, leaving entirely aside the acquisition of temperature, pressure, and concentration, for which [1] may serve as a comprehensive reference.


Liquid Metal Ultrasonic Wave Particle Tracking Velocimetry Liquid Sodium Liquid Gallium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brusey BW, Brussiere JF, Dubois M, Moreau A (eds) (1999) Advanced Sensors for Metal Processing. Canadian Institute of Mining, Metallurgy and Petroleum, MontrealGoogle Scholar
  2. 2.
    Tallbäck GR, Lavers JD, Beitelman LS (2003) Simulation and measurement of EMS induced fluid flow in billet/bloom casting systems. In: Asai S, Fautrelle Y, Gillon P (eds) Proceedings of the 4th International Symposium on Electromagnetic Processing of Materials, Lyon, France, pp 154-159Google Scholar
  3. 3.
    Taniguchi S, Maitake K, Okubo M, Ando T, Ueno K (2003) Rotary stirring of liquid metal without free surface deformation by combination of rotational and vertical traveling magnetic fields. ibid, pp 339-343Google Scholar
  4. 4.
    Szekely J, Chang CW, Ryan RE (1977) The measurement and prediction of the melt velocities in a turbulent, electromagnetically driven recirculating low melting alloy system. Metal Trans 8B:333-338Google Scholar
  5. 5.
    Moreau R (1978) Local and instantaneous measurements in liquid metal MHD. Proc Dynamic Flow Conf, pp 65-79Google Scholar
  6. 6.
    Branover H, Gelfgat YM, Tsinober AB, Shtern AB, Shcherbinin EV (1966) The application of Pitot and Prandtl tubes in magnetohydrodynamic experiments. Magnetohydrodynamics 2:55-58Google Scholar
  7. 7.
    Cramer A, Gerbeth G, Terhoeven P, Krätzschmar A (2004) Fluid velocity mea-surements in electro-vortical flows. Mat and Manufact Processes 19:665-678CrossRefGoogle Scholar
  8. 8.
    Mates SP, Settles GS (1995) A flow visualization study of the gas dynamics of liquid metal atomization nozzles. In: Proceedings of the International Conference on Powder Metallurgy and Particulate Materials, Seattle, USAGoogle Scholar
  9. 9.
    Griffiths RT, Nicol AA (1965) A fibre flowmeter suitable for very low flow rates. J Sci Instrum 42:797-799CrossRefGoogle Scholar
  10. 10.
    Zhilin VG, Zvyagin KV, Ivochkin YP, Oksman AA (1989) Diagnostics of liquid metal flows using fibre-optic velocity sensor. In: Lielpeteris M, Moreau R (eds) Liquid Metal Magnetohydrodynamics, Kluwer Academic, Dordrecht, 373-379Google Scholar
  11. 11.
    Eckert S, Gerbeth G, Witke W (2000) A new mechano-optical technique to measure local velocities in opaque fluids. Flow Meas Instrum 11:71-78CrossRefGoogle Scholar
  12. 12.
    Sajben M (1965) Hot wire anemometer in liquid mercury. Rev Sci Instrum 36:945-953CrossRefGoogle Scholar
  13. 13.
    Trakas C, Tabeling P, Chabrerie JP (1983) Low-velocity calibration of hot-film sensors in mercury. J Phys E: Sci Instrum 16:568-570CrossRefGoogle Scholar
  14. 14.
    Argyropoulos SA (2000) Measuring velocity in high-temperature liquid metals: a review. Skand J Metallurgy 30:273-285CrossRefGoogle Scholar
  15. 15.
    Reed CB, Picologlou BF, Dauzvardis PV, Bailey JL (1986) Techniques for measurement of velocity in liquid-metal MHD flows. Fusion Technol 10:813-821Google Scholar
  16. 16.
    Robinson T, Larsson K (1973) An experimental investigation of a magnetically driven rotating liquid-metal flow. J Fluid Mech 60:641-664CrossRefGoogle Scholar
  17. 17.
    Alemany A, Moreau R, Sulem PL, Frisch U (1979) Influence of an external magnetic field on homogeneous turbulence. J de Méchanique 18:277-313Google Scholar
  18. 18.
    Petrović DV, Vukoslavcević PV, Wallace JM (2003) The accuracy of turbu-lent velocity component measurements by multi-sensor hot wire probes: a new approach to an old problem. Exp Fluids 34:130-139Google Scholar
  19. 19.
    Faraday M (1832) Experimental researches in electricitysecond series (Bakerian lecture). Phil Trans Roy Soc 175:197-244Google Scholar
  20. 20.
    Kolin A (1943) Electromagnetic method for the determination of velocity dis-tribution in fluid flow. Phys Rev 63:218-219Google Scholar
  21. 21.
    Kolin A (1944) Electromagnetic velometry. I. A method for the determination of fluid velocity distribution in space and time. J Appl Phys 15:150-164Google Scholar
  22. 22.
    Ricou R, Vives C (1982) Local velocity and mass transfer measurements in molten metals using an incorporated probe. Int J Heat Mass Transfer 25:1579-1588CrossRefGoogle Scholar
  23. 23.
    Weissenfluh T (1985) Probes for local velocity and temperature measurements in liquid metal flow. Int J Heat Mass Transfer 28:1563-1574CrossRefGoogle Scholar
  24. 24.
    Tsinober A, Kit E, Teitel M (1987) On the relevance of the potential-difference method for turbulence measurements. J Fluid Mech 175:447-461CrossRefGoogle Scholar
  25. 25.
    Gelfgat YM, Gelfgat AY (2004) Experimental and numerical study of rotating magnetic field driven flow in cylindrical enclosures with different aspect ratios. Magnetohydrodynamics 40:147-160Google Scholar
  26. 26.
    Barz RU, Gerbeth G, Wunderwald U, Buhrig E, Gelfgat YM (1997) Modelling of the isothermal melt flow due to rotating magnetic fields in crystal growth. J Cryst Growth 180:410-421CrossRefGoogle Scholar
  27. 27.
    Grossman LM, Charwat AF (1952) The measurement of turbulent velocity fluctuations by the method of magnetic induction. Rev Sci Instrum 23:741-747CrossRefGoogle Scholar
  28. 28.
    Bojarevics A, Bojarevics V, Gelfgat YM, Pericleous K (1999) Liquid metal tur-bulent flow dynamics in a cylindrical container with free surface: experiment and numerical analysis. Magnetohydrodynamics 35:258-277Google Scholar
  29. 29.
    Kolesnikov YB, Tsinober AB (1972) Two-dimensional flow behind a cylinder. Magnetohydrodynamics 8:300-307Google Scholar
  30. 30.
    Eckert S, Gerbeth G, Witke W, Langenbrunner H (2001) MHD turbulence mea-surements in a sodium channel flow exposed to a transverse magnetic field. Int J Heat Fluid Flow 22:358-364CrossRefGoogle Scholar
  31. 31.
    Burr U, Barleon L, Müller U, Tsinober AB (2000) Turbulent transport of momentum and heat in magnetoydrodynamic rectangular duct flow with strong sidewall jets. J Fluid Mech 406:247-279zbMATHCrossRefGoogle Scholar
  32. 32.
    Davoust L, Cowley MD, Moreau R, Bolcato R (1999) Buoyancy-driven convection with a uniform magnetic field. Part 2. Experimental investigation. J Fluid Mech 400:59-90zbMATHCrossRefGoogle Scholar
  33. 33.
    Messadek K, Moreau R (2002) An experimental investigation of MHD quasi two-dimensional turbulent shear flows. J Fluid Mech 456:137-159zbMATHCrossRefGoogle Scholar
  34. 34.
    Bolonev N, Charenko A, Eidelmann A (1976) About the correction of turbulence spectra measured using conductivity anemometers. Ing Phys J 2:243-247 (in Russian)Google Scholar
  35. 35.
    Remenieras G, Hermant C (1954) Mesure électromagnétique des vitesses dans les liquides. Houille Blanche 9:732-746Google Scholar
  36. 36.
    Cramer A, Varshney K, Gundrum T, Gerbeth G (2006) Experimental study on the sensitivity and accuracy of electric potential local flow measurements. Flow Meas Instrum 17:1-11CrossRefGoogle Scholar
  37. 37.
    Johnson SA, Greenleaf JF, Tanaka M, Flandro G (1977) Reconstructing three-dimensional temperature and fluid velocity vector fields from acoustic transmis-sion measurements. ISA Trans 16:3-15Google Scholar
  38. 38.
    Atkinson P (1976) A fundamental interpretation of ultrasonic Doppler velocimeters. Ultrasound Med Biol 2:107-111CrossRefGoogle Scholar
  39. 39.
    Takeda Y (1986) Velocity profile measurement by ultrasound Doppler shift method. Int J Heat Fluid Flow 7:313-318CrossRefGoogle Scholar
  40. 40.
    Takeda Y (1991) Development of an ultrasound velocity profile monitor. Nucl Eng Design 126:277-284CrossRefGoogle Scholar
  41. 41.
    Takeda Y (1987) Measurement of velocity profile of mercury flow by ultrasound Doppler shift method. Nucl Technol 79:120-124Google Scholar
  42. 42.
    Brito D, Nataf H-C, Cardin P, Aubert J, Masson JP (2001) Ultrasonic Doppler velocimetry in liquid gallium. Exp Fluids 31:653-663CrossRefGoogle Scholar
  43. 43.
    Eckert S, Gerbeth G (2002) Velocity measurements in liquid sodium by means of ultrasound Doppler velocimetry. Exp Fluids 32:542-546CrossRefGoogle Scholar
  44. 44.
    Boehmer LS, Smith RW (1976) Ultrasonic instrument for continuous measure-ment of sodium levels in fast breeder reactors. IEEE Trans Nucl Sci 23:359-362CrossRefGoogle Scholar
  45. 45.
    Liu Y, Lynnworth LC, Zimmerman MA (1998) Buffer waveguides for flow measurement in hot fluids. Ultrasonics 36:305-315CrossRefGoogle Scholar
  46. 46.
    Jen C-K, Legoux J-G, Parent L (2000) Experimental evaluation of clad metal-lic buffer rods for high temperature ultrasonic measurements. NDT&E In 33:145-153CrossRefGoogle Scholar
  47. 47.
    Gelles IL (1966) Optical-fiber ultrasonic delay lines. J Acoust Soc Am 39:1111-1119CrossRefGoogle Scholar
  48. 48.
    Eckert S, Gerbeth G, Melnikov VI (2003) Velocity measurements at high temperatures by ultrasound Doppler velocimetry using an acoustic wave guide. Exp Fluids 35:381-388CrossRefGoogle Scholar
  49. 49.
    Eckert S, Gerbeth G, Gundrum T, Stefani F (2005) Velocity measurements in metallic melts. In: Proceedings of2005 ASME FED Summer Meeting, FEDSM2005-77089Google Scholar
  50. 50.
    Cramer A, Zhang C, Eckert S (2004) Local flow structures in liquid metals measured by ultrasonic Doppler velocimetry. Flow Meas Instrum 15:145-153CrossRefGoogle Scholar
  51. 51.
    Takeda Y (1999) Quasi-periodic state and transition to turbulence in a rotating Couette system. J Fluid Mech 389: 81-99zbMATHCrossRefGoogle Scholar
  52. 52.
    Takeda Y, Fischer WE, Sakakibara J (1993) Measurement of energy spectral density of a flow in a rotating Couette system. Phys Rev Lett 70:3569-3571CrossRefGoogle Scholar
  53. 53.
    Mashiko T, Tsuji Y, Mizuno T, Sano M (2004) Instantaneous measurement of velocity fields in developed thermal turbulence in mercury. Phys Rev E 69:036306CrossRefGoogle Scholar
  54. 54.
    Tsuji Y, Mizuno T, Mashiko T, Sano M (2005) Mean wind in convective turbulence of mercury. Phys Rev Lett 94:034501CrossRefGoogle Scholar
  55. 55.
    Eckert S, Willers B, Gerbeth G (2005) Measurements of the bulk velocity during solidification of metallic alloys. Metall Mater Trans A 36:267-270CrossRefGoogle Scholar
  56. 56.
    Takeda Y, Kikura H, Bauer G (1998) Flow measurement in a SINQ mockup target using mercury. In: Proceedings of 1998 ASME FED Summer Meeting, FEDSM98-5057Google Scholar
  57. 57.
    Zhang C, Eckert S, Gerbeth G (2005) Experimental study of a single bubble motion in a liquid metal column exposed to a DC magnetic field. Int J Multi-phase Flow 31:824-842zbMATHCrossRefGoogle Scholar
  58. 58.
    Szekely J (1964) Experimental study of the rate of metal mixing in an openhearth furnace. Journal ISIJ 202:505-508Google Scholar
  59. 59.
    Stewart MJ, Weinberg F (1972) Fluid flow in liquid metals. Experimental observations. J Cryst Growth 12:228-238CrossRefGoogle Scholar
  60. 60.
    Kakimoto K, Eguchi M, Watanabe H, Hibiya T (1988) Direct observation by X-ray radiography of convection of molten silicon in the Czochralski growth method. J Cryst Growth 88:365-370CrossRefGoogle Scholar
  61. 61.
    Campbell TA, Koster JN (1994) Visualization of liquid/solid interface morpholo-gies in gallium subject to natural convection. J Cryst Growth 140:414-425CrossRefGoogle Scholar
  62. 62.
    Campbell TA, Koster JN (1995) Radioscopic visualization of Indium Anti-monide growth by the vertical Bridgman-Stockbarger technique. J Cryst Growth 147:408-410CrossRefGoogle Scholar
  63. 63.
    Koster JN, Seidel T, Derebail R (1997) A radioscopic technique to study con-vective fluid dynamics in opaque liquid metals. J Fluid Mech 343:29-41CrossRefGoogle Scholar
  64. 64.
    Derebail R, Koster JN (1998) Visualization study of melting and solidification in convecting hypoeutectic Ga-In alloy. Int J Heat Mass Transfer 41:2537-2548CrossRefGoogle Scholar
  65. 65.
    Saito Y, Mishima K, Tobita Y, Suzuki T, Matsubayashi M (2005) Measurements of liquid-metal two-phase flow by using neutron radiography and electrical con-ductivity probe. Exp Therm Fluid Sci 29:323-330CrossRefGoogle Scholar
  66. 66.
    Saito Y, Mishima K, Tobita Y, Suzuki T, Matsubayashi M, Lim IC, Cha JE (2005) Application of high frame-rate neutron radiography to liquid-metal two-phase flow research. Nucl Instrum Meth Phys Res A 542:168-174CrossRefGoogle Scholar
  67. 67.
    Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Mag-netoencephalography theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413-497CrossRefGoogle Scholar
  68. 68.
    Köhler KU, Andrzejewski P, Julius E, Haubrich H (1994) Measurements of steel flow in the mould. In: Asai S (ed) Proceedings of International Symposium on Electromagnetic Processing of Materials, Nagoya, Japan, pp 344-349Google Scholar
  69. 69.
    Stefani F, Gerbeth G (1999) Velocity reconstruction in conducting fluids from magnetic field and electric potential measurements. Inverse Problems 15:771-786CrossRefMathSciNetGoogle Scholar
  70. 70.
    Stefani F, Gerbeth G (2000) A contactless method for velocity reconstruction in electrically conducting fluids. Meas Sci Technol 11:758-765CrossRefGoogle Scholar
  71. 71.
    Stefani F, Gundrum T, Gerbeth G (2004) Contactless inductive flow tomography. Phys Rev E 70:056306CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Sven Eckert
    • 1
  • Andreas Cramer
    • 1
  • Gunter Gerbeth
    • 1
  1. 1.Forschungszentrum RossendorfGermany

Personalised recommendations