Recombination in the TYLCV Complex: a Mechanism to Increase Genetic Diversity. Implications for Plant Resistance Development

  • Enrique Moriones
  • Susana García-Andrés
  • Jesús Navas-Castillo

Mutation, reassortment, and recombination are the major sources of genetic variation of plant viruses (García-Arenal et al., 2001; Worobey & Holmes, 1999). During mixed infections, viruses can exchange genetic material through recombination or reassortment of segments (when the parental genomes are fragmented) if present in the same cell context of the host plant. Hybrid progeny viruses might then arise, some of them with novel pathogenic characteristics and well adapted in the population that can cause new emerging diseases. Genetic exchange provides organisms with a tool to combine sequences from different origins which might help them to quickly evolve (Crameri et al., 1998). In many DNA and RNA viruses, genetic exchange is achieved through recombination (Froissart et al., 2005; Martin et al., 2005). As increasing numbers of viral sequences become available, recombinant viruses are recognized to be frequent in nature and clear evidence is found for recombination to play a key role in virus evolution (Awadalla, 2003; Chenault & Melcher, 1994; Moonan et al., 2000; Padidam et al., 1999; Revers et al., 1996; García-Arenal et al., 2001; Moreno et al., 2004). Understanding the role of recombination in generating and eliminating variation in viral sequences is thus essential to understand virus evolution and adaptation to changing environments

Knowledge about the existence and frequency of recombination in a virus population might help understanding the extent at which genes are exchanged and new virus variants arise. This information is essential, for example, to predict durability of genetic resistance because new recombinant variants might be formed with increased fitness in host-resistant genotypes. Determination of the extent and rate at which genetic rearrangement through recombination does occur in natural populations is also crucial if we use genome and genetic-mapping information to locate genes responsible of important phenotypes such as genes associated with virulence, transmission, or breakdown of resistance. Therefore, better estimates of the rate of recombination will facilitate the development of more robust strategies for virus control (Awadalla, 2003).


Tomato Yellow Leaf Curl Virus Tomato Leaf Tomato Yellow Leaf African Cassava Mosaic Virus Western Mediterranean Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aaziz, R. & Tepfer, M. (1999a). Recombination between genomic RNAs of two cucumoviruses under conditions of minimal selection pressure. Virology 263, 282–289.CrossRefPubMedGoogle Scholar
  2. Aaziz, R. & Tepfer, M. (1999b). Recombination in RNA viruses and in virus-resistant transgenic plants. J. Gen. Virol. 80, 1339–1346.PubMedGoogle Scholar
  3. Antignus, Y. & Cohen, S. (1994). Complete nucleotide sequence of an infectious clone of a mild isolate of Tomato yellow leaf curl virus (TYLCV). Phytopathology 84, 707–712.CrossRefGoogle Scholar
  4. Awadalla, P. (2003).The evolutionary genomics of pathogen recombination. Nat. Rev. Genet. 4, 50–60.CrossRefPubMedGoogle Scholar
  5. Beachy, R. N. (1997). Mechanisms and applications of pathogen-derived resistance in transgenic plants. Curr. Opin. Biotechnol. 8, 215–220.CrossRefPubMedGoogle Scholar
  6. Bedford, I. D., Kelly, A., Banks, G. K., Briddon, R. W., Cenis, J. L. & Markham, P. G. (1998). Solanum nigrum: an indigenous weed reservoir for a tomato yellow leaf curl geminivirus in southern Spain. Eur. J. Plant Pathol. 104, 221–222.CrossRefGoogle Scholar
  7. Berrie, L. C., Rybicki, E. P., & Rey, M. E. C. (2001). Complete nucleotide sequence and host range of South African cassava mosaic virus: further evidence for recombinations amongst begomoviruses. J. Gen. Virol. 82, 53–58.PubMedGoogle Scholar
  8. Bonnet, J., Fraile, A., Sacristan, S., Malpica, J. M., & García-Arenal, F. (2005). Role of recombination in the evolution of natural populations of Cucumber mosaic virus, a tripartite RNA plant virus. Virology 332, 359–368.CrossRefPubMedGoogle Scholar
  9. Briddon, R. W., Bedford, I. D., Tsai, J. H., & Markham, P. G. (1996). Analysis of the nucleotide sequence of the treehopper-transmitted geminivirus, tomato pseudo-curly top virus, suggests a recombinant origin. Virology 219, 387–394.CrossRefPubMedGoogle Scholar
  10. Bürger, R. (1999). Evolution of genetic variability and the advantage of sex and recombination in changing environments. Genetics 153, 1055–1069.PubMedGoogle Scholar
  11. Chatchawankanphanich, O. & Maxwell, D. P. (2002). Tomato leaf curl Karnataka virus from Bangalore, India, appears to be a recombinant begomovirus. Phytopathology 92, 637–645.CrossRefPubMedGoogle Scholar
  12. Chenault, K. D. & Melcher, U. (1994). Phylogenetic relationships reveal recombination among isolates of cauliflower mosaic virus. J. Mol. Evol. 39, 496–505.CrossRefPubMedGoogle Scholar
  13. Cohen, S. & Antignus, Y. (1994). Tomato yellow leaf curl virus, a whitefly-borne geminivirus of tomatoes. Adv. Dis. Vector Res. 10, 259–288.Google Scholar
  14. Crameri, A., Raillard, S. A., Bermúdez, E., & Stemmer, W. P. (1998). DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291.CrossRefPubMedGoogle Scholar
  15. de Wispelaere, M., Gaubert, S., Trouilloud, S., Belin, C., & Tepfer, M. (2005). A map of the diversity of RNA3 recombinants appearing in plants infected with Cucumber mosaic virus and Tomato aspermy virus. Virology 331, 117–127.Google Scholar
  16. Devereux, J., Haeberli, P., & Smithies, O. (1984). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12, 387–395.CrossRefPubMedGoogle Scholar
  17. Domingo, E. (2000). Viruses at the edge of adaptation. Virology 270, 251–253.CrossRefPubMedGoogle Scholar
  18. Dybdahl, M. F. & Storfer, A. (2003). Parasite local adaptation: Red Queen versus Suicide King. Trends Ecol. Evol. 18, 523–530.CrossRefGoogle Scholar
  19. Eigen M. (1993). Viral quasispecies. Sci. Am. 269, 42–49.CrossRefPubMedGoogle Scholar
  20. Fauquet, C. M., Bisaro, D. M., Briddon, R. W., Brown, J. K., Harrison, B. D., Rybicki, E. P., Stenger, D. C., & Stanley, J. (2003). Revision of taxonomic criteria for species demarcation in the family Geminiviridae, and an updated list of begomovirus species. Arch. Virol. 148, 405–421.CrossRefPubMedGoogle Scholar
  21. Fernández-Cuartero, B., Burgyan, J., Aranda, M. A., Salanki, K., Moriones, E., & Garcia-Arenal, F. (1994). Increase in the relative fitness of a plant virus RNA associated with its recombinant nature. Virology 203, 373–377.CrossRefPubMedGoogle Scholar
  22. Fondong, V. N., Pita, J. S., Rey, M. E. C., de Kochko, A., Beachy, R. N., & Fauquet, C. M. (2000). Evidence of synergism between African cassava mosaic virus and a new double-recombinant geminivirus infecting cassava in Cameroon. J. Gen. Virol. 81, 287–297.PubMedGoogle Scholar
  23. Frischmuth, T. & Stanley, J. (1993). Strategies for control of geminivirus diseases. Sem. Virol. 4, 329–337.CrossRefGoogle Scholar
  24. Frischmuth, T. & Stanley, J. (1998). Recombination between viral DNA and the transgenic coat protein gene of African cassava mosaic geminivirus. J. Gen. Virol. 79, 1265–1271.PubMedGoogle Scholar
  25. Froissart, R., Roze, D., Uzest, M., Galibert, L., Blanc, S., & Michalakis, Y. (2005). Recombination every day: abundant recombination in a virus during a single multi-cellular host infection. PLoS Biol. 3, 389–395.CrossRefGoogle Scholar
  26. Funayama-Noguchi, S. (2001). Ecophysiology of virus-infected plants: a case study of Eupatorium makinoi infected by geminivirus. Plant Biol. 3, 251–262.CrossRefGoogle Scholar
  27. García-Andrés, S., Monci, F., Navas-Castillo, J., & Moriones. (2006). Begomovirus genetic diversity in the native plant reservoir Solanum nigrum: evidence for the presence of a new virus species of recombinant nature. Virology 350, 433–442.CrossRefPubMedGoogle Scholar
  28. García-Andrés, S., Accotto, G. P., Navas-Castillo, J., & Moriones, E. (2007a). Founder effect plant host, and recombination shape the emergent population of begomoviruses that cause the tomato yellow leaf curl disease in the Mediterranean basin. Virology 359, 302–312.CrossRefPubMedGoogle Scholar
  29. García-Andrés, S., Tomis, D. B., Sanchez-Campos, S., Navas-Castillo, J., & Moriones, E. (2007b). The contribution of recombination to generate differentiation in a plant DNA virus. Virology (in press).Google Scholar
  30. García-Arenal, F. & McDonald, B. A. (2003). An analysis of the durability of resistance to plant viruses. Phytopathology 93, 941–952.CrossRefPubMedGoogle Scholar
  31. García-Arenal, F., Fraile, A., & Malpica, J. M. (2001). Variability and genetic structure of plant virus populations. Annu. Rev. Phytopathol. 39, 157–186.CrossRefPubMedGoogle Scholar
  32. Gibbs, M. J., Armstrong, J. S., & Gibbs, A. J. (2001). Recombination in the hemagglutinin gene of the 1918 “Spanish flu”. Science 293, 1842–1845.CrossRefPubMedGoogle Scholar
  33. Harrison, B. D. (2002). Virus variation in relation to resistance-breaking in plants. Euphytica 124, 181–192.CrossRefGoogle Scholar
  34. Harrison, B. D. & Robinson, D. J. (1999). Natural genomic and antigenic variation in whitefly-transmitted geminiviruses (Begomoviruses). Annu. Rev. Phytopathol. 37, 369–398.CrossRefPubMedGoogle Scholar
  35. Hou, Y. M. & Gilbertson, R. L. (1996). Increased pathogenicity in a pseudorecombinant bipartite geminivirus correlates with intermolecular recombination. J. Virol. 70, 5430–5436.PubMedGoogle Scholar
  36. Hu, W.S., Rhodes, T., Dang, Q., & Pathak, V. (2003). Retroviral recombination: Review of genetic analyses. Front. Biosci. 8, D143–D155.CrossRefPubMedGoogle Scholar
  37. Hull, R. (2002). Matthews’ Plant Virology. 4th edn. Academic Press, San Diego, CA.Google Scholar
  38. Idris, A. M. & Brown, J. K. (2005). Evidence for interspecific-recombination for three monopartite begomoviral genomes associated with the tomato leaf curl disease from central Sudan. Arch. Virol. 150, 1003–1012.CrossRefPubMedGoogle Scholar
  39. Jeske, H., Lutgemeier, M., & Preiss, W. (2001). DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic virus. EMBO J. 20, 6158–6167.CrossRefPubMedGoogle Scholar
  40. Jovel, J., Reski, G., Rothenstein, D., Ringel, M., Frischmuth, T., & Jeske, H. (2004). Sida micrantha mosaic is associated with a complex infection of begomoviruses different from Abutilon mosaic virus. Arch. Virol. 149, 829–841.CrossRefPubMedGoogle Scholar
  41. Kiraly, L., Bourque, J. E., & Schoelz, J. E. (1998). Temporal and spatial appearance of recombinant viruses formed between cauliflower mosaic virus (CaMV) and CaMV sequences present in transgenic Nicotiana bigelovii. Mol. Plant Microbe Interact. 11, 309–316.CrossRefGoogle Scholar
  42. Kirthi, N., Maiya, S. P., Murthy, M. R. N. & Savithr, H. S. (2002). Evidence for recombination among the tomato leaf curl virus strains/species from Bangalore, India. Arch. Virol. 147, 255–272.CrossRefPubMedGoogle Scholar
  43. Klute, K. A., Nadler, S. A., & Stenger, D. C. (1996). Horseradish curly top virus is a distinct subgroup II geminivirus species with rep and C4 genes derived from a subgroup III ancestor. J. Gen. Virol. 77, 1369–1378.CrossRefPubMedGoogle Scholar
  44. Kolbe, J. J., Glor, R. E., Schettino, L. R. G., Lara, A. C., Larson, A., & Losos, J. B. (2004). Genetic variation increases during biological invasion by a Cuban lizard. Nature 431, 177–181.CrossRefPubMedGoogle Scholar
  45. Lecoq, H., Moury, B., Desbiez, C., Palloix, A., & Pitrat, M. (2004). Durable virus resistance in plants through conventional approaches: a challenge. Virus Res. 100, 31–39.CrossRefPubMedGoogle Scholar
  46. Lewis-Rogers, N., Crandall K. A., & Posada D. (2004). Evolutionary analyses of genetic recombination. Dynam. Genet. 49–78.Google Scholar
  47. Lively, C. M. & Dybdahl, M. F. (2000). Parasite adaptation to locally common host genotypes. Nature 405, 679–681.CrossRefPubMedGoogle Scholar
  48. Lomonossoff, G. P. (1995). Pathogen-derived resistance to plant viruses. Annu. Rev. Phytopathol. 33, 323–343.CrossRefPubMedGoogle Scholar
  49. Martin, D. P., van der Walt, E., Posada, D., & Rybicki, E. P. (2005). The evolutionary value of recombination is constrained by genome modularity. PLoS Genet. 1, 475–479.CrossRefGoogle Scholar
  50. Martin, D. P., Willment, J. A., Billharz, R., Velders, R., Odhiambo, B., Njuguna, J., James, D., & Rybicki, E. P. (2001). Sequence diversity and virulence in Zea mays of Maize streak virus isolates. Virology 288, 247–255.CrossRefPubMedGoogle Scholar
  51. Moffat, A. S. (1999). Plant pathology. Geminiviruses emerge as serious crop threat. Science 286, 1835.CrossRefGoogle Scholar
  52. Monci, F., Sanchez-Campos, S., Navas-Castillo, J., & Moriones, E. (2002). A natural recombinant between the geminiviruses Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. Virology 303, 317–326.CrossRefPubMedGoogle Scholar
  53. Moonan, F., Molina, J., & Mirkov, T. E. (2000). Sugarcane yellow leaf virus: an emerging virus that has evolved by recombination between luteoviral and poleroviral ancestors. Virology 269, 156–171.CrossRefPubMedGoogle Scholar
  54. Moreno, I. M., Malpica, J. M., Diaz-Pendon, J. A., Moriones, E., Fraile, A., & García-Arenal, F. (2004). Variability and genetic structure of the population of watermelon mosaic virus infecting melon in Spain. Virology 318, 451–460.CrossRefPubMedGoogle Scholar
  55. Morilla, G., Antúnez, C., Bejarano, E. R., Janssen, D., & Cuadrado, I. M. (2003). A new Tomato yellow leaf curl virus strain in southern Spain. Plant Dis. 87, 1004.CrossRefGoogle Scholar
  56. Morilla, G., Krenz, B., Jeske, H., Bejarano, E., & Wege, C. (2004). Tête à Tête of Tomato yellow leaf curl virus and Tomato yellow leaf curl Sardinia virus in single nuclei. J. Virol. 78, 10715–10723.CrossRefPubMedGoogle Scholar
  57. Moriones, E. & Navas-Castillo, J. (2000). Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res. 71, 123–134.CrossRefPubMedGoogle Scholar
  58. Navas-Castillo, J., Sánchez-Campos, S., Díaz, J. A., Sáez, E., & Moriones, E. (1999). Tomato yellow leaf curl virus-Is causes a novel disease of common bean and severe epidemics in tomato in Spain. Plant Dis. 81, 19–32.Google Scholar
  59. Navas-Castillo, J., Sánchez-Campos, S., Noris, E., Louro, D., Accotto, G. P., & Moriones, E. (2000). Natural recombination between Tomato yellow leaf curl virus-Is and Tomato leaf curl virus. J. Gen. Virol. 81, 2797–2801.PubMedGoogle Scholar
  60. Navot, N., Pichersky, E., Zeidan, M., Zamir, D., & Czosnek, H. (1991). Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic component. Virology 185, 151–161.CrossRefPubMedGoogle Scholar
  61. Noris, E., Hidalgo, E., Accotto, G. P., & Moriones, E. (1994). High similarity among the Tomato yellow leaf curl virus isolates from the west Mediterranean basin: the nucleotide sequence of an infectious clone from Spain. Arch. Virol. 135, 165–170.CrossRefPubMedGoogle Scholar
  62. Novak, S. J. & Mack, R. N. (2001). Tracing plant introduction and spread: genetic evidence from Bromus tectorum (Cheatgrass). BioScience 51, 114–122.CrossRefGoogle Scholar
  63. Ooi, K., Ohshita, S., Ishii, I., & Yahara, T. (1997). Molecular phylogeny of geminivirus infecting wild plants in Japan. J. Plant Res. 110, 247–257.CrossRefGoogle Scholar
  64. Padidam, M., Sawyer, S., & Fauquet, C. M. (1999). Possible emergence of new geminiviruses by frequent recombination. Virology 265, 218–225.CrossRefPubMedGoogle Scholar
  65. Pita, J. S., Fondong, V. N., Sangare, A., Otim-Nape, G. W., Ogwal, S., & Fauquet, C. M. (2001). Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. J. Gen. Virol. 82, 655–665.PubMedGoogle Scholar
  66. Preiss, W. & Jeske, H. (2003). Multitasking in replication is common among geminiviruses. J. Virol. 77, 2972–2980.CrossRefPubMedGoogle Scholar
  67. Rest, J. S. & Mindell, D. P. (2003). SARS associated coronavirus has a recombinant polymerase and coronaviruses have a history of host-shifting. Infect. Genet. Evol. 3, 219–225.CrossRefPubMedGoogle Scholar
  68. Revers, F., LeGall, O., Candresse, T., LeRomancer, M., & Dunez, J. (1996). Frequent occurrence of recombinant potyvirus isolates. J. Gen. Virol. 77, 1953–1965.CrossRefPubMedGoogle Scholar
  69. Robinson, D. J. (1996). Environmental risk assessment of releases of transgenic plants containing virus-derived inserts. Transgenic Res. 5, 359–362.CrossRefGoogle Scholar
  70. Roye, M. E., McLaughlin, W. A., Nakhla, M. K., & Maxwell, D. P. (1997). Genetic diversity among geminiviruses associated with the weed species Sida spp., Macroptilium lathyroides, and Wissadula amplissima from Jamaica. Plant Dis. 81, 1251–1258.CrossRefGoogle Scholar
  71. Rybicki, E. P. (1994). A phylogenetic and evolutionary justification for 3 genera of Geminiviridae. Arch. Virol. 139, 49–77.CrossRefPubMedGoogle Scholar
  72. Salati, R., Nahkla, M. K., Rojas, M. R., Guzman, P., Jaquez, J., Maxwell, D. P., & Gilbertson, R. L. (2002). Tomato yellow leaf curl virus in the Dominican Republic: characterization of an infectious clone, virus monitoring in whiteflies, and identification of reservoir hosts. Phytopathology 92, 487–496.CrossRefPubMedGoogle Scholar
  73. Sánchez-Campos, S., Navas-Castillo, J., Camero, R., Soria, C., Díaz, J. A., & Moriones, E. (1999). Displacement of tomato yellow leaf curl virus (TYLCV) -Sr by TYLCV-Is in tomato epidemics in Spain. Phytopathology 89, 1038–1043.CrossRefPubMedGoogle Scholar
  74. Sanchez-Campos, S., Navas-Castillo, J., Monci, F., Diaz, J. A., & Moriones, E. (2000). Mercurialis ambigua and Solanum luteum: two newly discovered natural hosts of tomato yellow leaf curl geminiviruses. Eur. J. Plant Pathol. 106, 391–394.CrossRefGoogle Scholar
  75. Sánchez-Campos, S., Díaz, J. A., Monci, F., Bejarano, E. R., Reina, J., Navas-Castillo, J., Aranda, M. A., & Moriones, E. (2002). High genetic stability of the begomovirus Tomato yellow leaf curl Sardinia virus in southern Spain over an 8-year period. Phytopathology 92, 842–849.CrossRefPubMedGoogle Scholar
  76. Sanford, J. C. & Johnston, S. A. (1985). The concept of parasite-derived resistance: deriving resistance genes from the parasite’s own genome. J. Theor. Biol. 115, 395–405.CrossRefGoogle Scholar
  77. Sanz, A. I., Fraile, A., Gallego, J. M., Malpica, J. M., & García-Arenal, F. (1999). Genetic variability of natural populations of cotton leaf curl geminivirus, a single-stranded DNA virus. J. Mol. Evol. 49, 672–681.CrossRefPubMedGoogle Scholar
  78. Sanz, A. I., Fraile, A., García-Arenal, F., Zhou, X. P., Robinson, D. J., Khalid, S., Butt, T., & Harrison, B. D. (2000). Multiple infection, recombination and genome relationships among begomovirus isolates found in cotton and other plants in Pakistan. J. Gen. Virol. 81, 1839–1849.PubMedGoogle Scholar
  79. Saunders, K. & Stanley, J. (1999). A nanovirus-like DNA component associated with yellow vein disease of Ageratum conyzoides: evidence for interfamilial recombination between plant DNA viruses. Virology 264, 142–152.CrossRefPubMedGoogle Scholar
  80. Saunders, K., Lucy, A., & Stanley, J. (1991). DNA forms of the geminivirus African cassava mosaic virus consistent with a rolling circle mechanism of replication. Nucleic Acids Res. 19, 2325–2330.CrossRefPubMedGoogle Scholar
  81. Saunders, K., Salim, N., Mali, V. R., Malathi, V. G., Briddon, R., Markham, P. G., & Stanley, J. (2002). Characterisation of Sri Lankan cassava mosaic virus and Indian cassava mosaic virus: Evidence for acquisition of a DNA B component by a monopartite begomovirus. Virology 293, 63–74.CrossRefPubMedGoogle Scholar
  82. Stanley, J., Bisaro, D. M., Briddon., R. W., Brown, J. K., Fauquet, C. M., Harrison, B. D., Rybicki, E. P., & Stenger, D. C. (2005). Family Geminiviridae. In C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger, & L. A. Ball (Eds.), Virus Taxonomy, Eighth Report of the International Committee on Taxonomy of Viruses. San Diego, CA: Academic Press, pp. 301–326.Google Scholar
  83. Stavrinides, J. & Guttman, D. S. (2004). Mosaic evolution of the severe acute respiratory syndrome coronavirus. J. Virol. 78, 76–82.CrossRefPubMedGoogle Scholar
  84. Stenger, D. C., Davis, K. R., & Bisaro, D. M. (1994). Recombinant Beet curly top virus genomes exhibit both parental and novel pathogenic phenotypes. Virology 200, 677–685.CrossRefPubMedGoogle Scholar
  85. Stenger, D. C., Revington, G. N., Stevenson, M. C., & Bisaro, D. M. (1991). Replicational release of geminivirus genomes from tandemly repeated copies. Evidence for rolling circle replication of a plant viral DNA. Proc. Natl. Acad. Sci. USA 88, 8029–8033.CrossRefGoogle Scholar
  86. Tepfer, M. (1993). Viral genes and transgenic plants. Bio-Technology 11, 1125–1132.Google Scholar
  87. Tepfer, M. (2002). Risk assessment of virus-resistant transgenic plants. Annu. Rev. Phytopathol. 40, 467–491.CrossRefPubMedGoogle Scholar
  88. Umaharan, P., Padidam, M., Phelps, R. H., Beachy, R. N., & Fauquet, C. M. (1998). Distribution and diversity of geminiviruses in Trinidad and Tobago. Phytopathology 88, 1262–1268.CrossRefPubMedGoogle Scholar
  89. Varma, A. & Malathi, V. G. (2003). Emerging geminivirus problems: a serious threat to crop production. Ann. Appl. Biol. 142, 145–164.CrossRefGoogle Scholar
  90. Vignuzzi, M., Stone, J. K., Arnold, J. J., Cameron, C. E. & Andino, R. (2006). Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439, 344–348.CrossRefPubMedGoogle Scholar
  91. Worobey, M. & Holmes, E. C. (1999). Evolutionary aspects of recombination in RNA viruses. J. Gen. Virol. 80, 2535–2543.PubMedGoogle Scholar
  92. Zhou, X. P., Liu, Y. L., Calvert, L., Munoz, C., OtimNape, G. W., Robinson, D. J. & Harrison, B. D. (1997). Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J. Gen. Virol. 78, 2101–2111.PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Enrique Moriones
    • 1
  • Susana García-Andrés
    • 1
  • Jesús Navas-Castillo
    • 1
  1. 1.Estación Experimental “La Mayora”Consejo Superior de Investigaciones CientíficasAlgarrobo-CostaSpain

Personalised recommendations