Abstract

Ancient people acknowledged the two sources of natural light as the greater (the Sun) and the lesser (the Moon): “And God made two great lights; the greater light to rule the day, and the lesser light to rule the night...” (Genesis 1: 16. Bible, King James Version).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrami G. (1972) Correlations between lunar phases and rhythmicities in plant growth under field conditions. Can J Bot 50: 2157–2166.Google Scholar
  2. Aréchiga H. (1977) Circadian rhythmicity in the nervous system of crustaceans. Fed Proc 36(7): 2036–2041.PubMedGoogle Scholar
  3. Arrhenius S. (1898) [Cosmic influences on physiological phenomena.] [Swedish]. Skand Archiv Physiol 8: 367.Google Scholar
  4. Backwell PRY, O’Hara PD, Christy JH. (1998) Prey availability and selective foraging in shorebirds. Anim Behav 55(6): 1659–1667.PubMedCrossRefGoogle Scholar
  5. Ball EE. (1968) Activity patterns and retinal pigment migration in Pagurus (Decapoda, Paguridae). Crustaceana 14: 302–306.Google Scholar
  6. Barnwell FH. (1966) Daily and tidal patterns of activity in individual fiddler crabs (Genus Uca) from the Woods Hole region. Biol Bull 130: 1–17.PubMedCrossRefGoogle Scholar
  7. Barnwell FH. (1968) Comparative aspects of the chromatophoric responses to light and temperature in fiddler crabs of the genus Uca. Biol Bull 134(2): 221–234.CrossRefGoogle Scholar
  8. Barnwell FH. (1976) Variation in the form of the tide and some problems it poses for biological timing systems. In: Biological Rhythms in the Marine Environment. DeCoursey PJ, ed. Columbia, SC: University of South Carolina Press, pp. 161–187.Google Scholar
  9. Barr W. (2000) Lunacy revisited. The influence of the moon on mental health and quality of life. J Psychosoc Nurs Ment Health Serv 38(5): 28–35.PubMedGoogle Scholar
  10. Bergin ME. (1981) Hatching rhythms in Uca pugilator (Decapoda: Brachyura). Marine Biol 63: 151–158.CrossRefGoogle Scholar
  11. Bhattacharjee C, Bradley P, Smith M, Scally AJ, Wilson BJ. (2000) Do animals bite more during a full moon? Retrospective observational analysis. BMJ 321(7276): 1559–1561.PubMedCrossRefGoogle Scholar
  12. Bohn G. (1903) Sur les movements oscillatoires des Convoluta roscoffensis. CR Acad Sci (Paris) 137: 576–578.Google Scholar
  13. Brown FA Jr, Fingerman M, Sandeen M, Webb HM. (1953) Persistent diurnal and tidal rhythms of color change in the fiddler crab, Uca pugnax. J Exp Zool 123: 29–60.CrossRefGoogle Scholar
  14. Brown FA Jr. (1954) Biological clocks and the fiddler crab. Scient Amer 190(4): 34–37.CrossRefGoogle Scholar
  15. Brown FA Jr. (1970) Hypothesis of environmental timing of the clock. In: The Biological Clock: Two Views. Brown FA Jr, Hastings JW, Palmer JD, eds. New York: Academic Press, pp. 13–59.Google Scholar
  16. Brown FA Jr, Chow CS. (1973) Lunar-correlated variations in water uptake by bean seeds. Biol Bull 145: 265–278.CrossRefGoogle Scholar
  17. Brown FA Jr, Park YH. (1975) A persistent monthly variation in responses of planarians to light, and its annual modulation. Intl J Chronobiol 3: 57–62.Google Scholar
  18. Buckley NA, Whyte IM, Dawson AH. (1993) There are days... and moons. Self-poisoning is not lunacy. Med J Aust 159(11–12): 786–789.PubMedGoogle Scholar
  19. Bünning E. (1969) [The importance of circadian leaf movements for the precision of daylength measurement] [German]. Plant (Berl) 86: 209–217.Google Scholar
  20. Bünning E, Moser I. (1969) Interference of moonlight with the photoperiodic measurement of time by plants, and their adaptive reaction. Proc Natl Acad Sci USA 62: 1018–1022.PubMedCrossRefGoogle Scholar
  21. Bünning E. (1971) The adaptive value of circadian leaf movements. In: Biochronometry. Menaker M, ed. Washington, DC: Natl Acad Sci, pp. 203–211.Google Scholar
  22. Bünning E. (1973) The Physiological Clock, 3rd edn. Berlin: Springer-Verlag, 258 pp.Google Scholar
  23. Bünning E. (1979) Circadian rhythms, light, and photoperiodism: a re-evaluation. Bot Mag Tokyo 92: 89–103.CrossRefGoogle Scholar
  24. Caspers H. (1984) Spawning periodicity and habitat of the palolo worm Eunice viridis (Polychaeta: Eunicidae) in the Samoan Islands. Marine Biol 79: 229–236.CrossRefGoogle Scholar
  25. Chadee DD, Tikasingh ES. (1989) Diel biting activity of Culex (Melanoconion) caudelli in Trinidad, West Indies. Med Vet Entomol 3(3): 231–237.PubMedGoogle Scholar
  26. Cutler WB. (1980) Lunar and menstrual phase locking. Amer J Obstet Gynecol 137:834–839.Google Scholar
  27. de Castro JM, Pearcey SM. (1995) Lunar rhythms of the meal and alcohol intake of humans. Physiol Behav 57(3): 439–444.PubMedCrossRefGoogle Scholar
  28. DeCoursey PJ. (1979) Egg-hatching rhythms in three species of fiddler crabs. In: Cyclic Phenomena in Marine Plants and Animals. Naylor E, Hartnoll RG, eds. Oxford: Pergamon, pp. 399–406.Google Scholar
  29. DeCoursey PJ. (1983) Biological timing. In: The Biology of Crustacea, Vol. 7: Behavior and Ecology. Vernberg FJ, Vernberg WB, eds. New York: Academic Press, pp. 107–162.Google Scholar
  30. Dunea G. (1993) Moon over Slovakia. BMJ 307: 1363.Google Scholar
  31. Enright JT. (1963) The tidal rhythm of activity of a sand-beach amphipod. Z Vergl Physiol 46: 276–313.CrossRefGoogle Scholar
  32. Enright JT. (1965) Entrainment of a tidal rhythm. Science 147: 864–866.CrossRefPubMedGoogle Scholar
  33. Enright JT. (1971a) Heavy water slows biological timing processes. Z Vergl Physiol 72: 1–16.CrossRefGoogle Scholar
  34. Enright JT. (1971b) The internal clock of drunken isopods. Z Vergl Physiol 75: 332–346.CrossRefGoogle Scholar
  35. Enright JT. (1972) A virtuoso isopod. Circa-lunar rhythms and their tidal fine structure. J Comp Physiol 77: 141–162.CrossRefGoogle Scholar
  36. Erkert H-G. (1974) [The influence of moonlight on the activity patterns of night-active mammals] [German]. Oecologia (Berl) 14: 269–287.CrossRefGoogle Scholar
  37. Fingerman M. (1956) Phase difference in the tidal rhythms of color change of two species of fiddler crab. Biol Bull 110: 274–290.CrossRefGoogle Scholar
  38. Fingerman M, Yamamoto Y. (1964) Daily rhythm of color change in eyestalkless fiddler crabs, Uca pugilator (abstract). Amer Zool 4(3): 334.Google Scholar
  39. Franke H-D. (1986) The role of light and endogenous factors in the timing of the reproductive cycle of Typosyllis prolifera and some other polychaetes. Amer Zool 26: 433–445.Google Scholar
  40. Fuhrman M. (1992) Phase Relationships of Circadian Oscillations in the Leaves of Soybean (Glycine Max L. Merr) Cultivars of Differing Maturity Groups Relative to Photoperiodic Sensitivity. Thesis. University of Minnesota.Google Scholar
  41. Gehrels T, Coffeen T, Owings D. (1964) Wavelength dependence of polarization: III. The lunar surface. Astronom J 69: 826–852.CrossRefGoogle Scholar
  42. Gibson RN. (1965) Rhythmic activity in littoral fish. Nature 207: 544–545.CrossRefGoogle Scholar
  43. Gibson RN. (1970) The tidal rhythm of activity of Coryphoblennius galerita (L.) (Teleostei, Blennidiidae). Anim Behav 18: 539–543.CrossRefGoogle Scholar
  44. Guillon P, Guillon D, Lansac J, Soutoul JH, Bertrand P, Hornecker JP. (1986) [Births, fertility, rhythms and lunar cycle. A statistical study of 5,927,978 births.] [French]. J Gynecol Obstet Biol Reprod (Paris) 15(3): 265–271.Google Scholar
  45. Guthmann H, Ostwald D. (1936) Menstruation und Mond. Manschrift für Geburtsch und Gynekologie 103: 232–235.Google Scholar
  46. Halberg Fcn, Halberg F, Sothern RB, Pearse JS, Pearse VB, Shankaraiah K, Giese AC. (1987) Consistent synchronization and circaseptennian (about 7-yearly) modulation of circannual gonadal index rhythm of two marine invertebrates. In: Advances in Chronobiology-Part A. Pauly JE, Scheving LE, eds. New York: Alan R Liss, pp. 225–238.Google Scholar
  47. Hardtland-Rowe R. (1955) Lunar rhythm in the emergence of an ephemeropteran. Nature 176: 657.CrossRefGoogle Scholar
  48. Hines MN. (1954) A tidal rhythm in behavior of melanophores in autotomized legs of Uca pugnax. Biol Bull 107: 386–396.CrossRefGoogle Scholar
  49. Hogben LT, Slome D. (1931) The pigmentary effector system: VI. The dual character of endocrine coordination in amphibian colour change. Proc Royal Soc (London), Ser B 108: 10–53.Google Scholar
  50. Hughes DA. (1972) On the endogenous control of tide-associated displacements of pink shrimp, Penaeus duorarum Burkenroad. Biol Bull 142: 271–280.CrossRefGoogle Scholar
  51. Jellyman DJ, Lambert PW. (2003) Factors affecting recruitment of glass eels into the Grey River, New Zealand. J Fish Biol 63: 1067–1079.CrossRefGoogle Scholar
  52. Kadman-Zahavi A, Peiper D. (1987) Effects of moonlight on flower induction in Pharbitis nil, using a single dark period. Ann Bot 6: 621–623.Google Scholar
  53. Kerfoot WB. (1967) The lunar periodicity of Sphecodogastra texana, a nocturnal bee (Hymenoptera: Halictidae). Anim Behav 15: 479–486.PubMedCrossRefGoogle Scholar
  54. Kleitman N. (1949) Biological rhythms and cycles. Physiol Rev 29(1): 1–29 (see p. 18).PubMedGoogle Scholar
  55. Kopal Z. (1969) The Moon. Dordrecht, The Netherlands: D. Reidl Publishing Company.Google Scholar
  56. Lang HJ. (1977) Lunar periodicity of colour sense of fish. J Interdiscipl Cycle Res 8(3–4):317–321.Google Scholar
  57. Law SP. (1986) The regulation of menstrual cycle and its relationship to the moon. Acta Obstet Gynecol Scand 65(1): 45–48.PubMedCrossRefGoogle Scholar
  58. Lecolazet R. (1977) Section physical geodesy, permanent commission on Earth tides. In: Proceedings of 8th International Symposium on Earth Tides. Bonn, September 19–24, 1977. Bonn: Bonatz & Melchior, pp. 23–29.Google Scholar
  59. Lieber AL. (1978) Human aggression and the lunar synodic cycle. J Clin Psychiatry 39(5):385–392.PubMedGoogle Scholar
  60. Mandoli DF, Briggs WR. (1981) Phytochrome control of two low-irradiance responses in etiolated oat seedlings. Plant Physiol 67: 733–739.PubMedGoogle Scholar
  61. Martin L. (1907) La mémoire chez Convoluta roscoffensis. CR Acad Sci (Paris) 145: 555–557.Google Scholar
  62. Maw MG. (1967) Periodicities in the influences of air ions on the growth of garden cress Lepidium sativum C. Can J Plant Sci 47: 499–505.Google Scholar
  63. Melchior P. (1966) The Earth Tides. Oxford: Pergamon, 458 pp.Google Scholar
  64. Mehta TS, Lewis RD. (2000) Quantitative tests of a dual circalunidian clock model for tidal rhythmicity in the sand beach isopod Cirolana cookii. Chronobiol Intl 17(1): 29–41.CrossRefGoogle Scholar
  65. Michelson AA, Gale HG. (1919) The rigidity of the earth. Astrophy J L: 330–345.Google Scholar
  66. Mikulecky M, Zemek R. (1992) Does the moon influence the predatory activity of mites? Experientia 48(5): 530–532.PubMedCrossRefGoogle Scholar
  67. Mikulecky M, Valachova A. (1996) Lunar influence on atrial fibrillation? Braz J Med Biol Res 29(8): 1073–1075.PubMedGoogle Scholar
  68. Mikulecky M, Bounias M. (1997) Worker honeybee hemolymph lipid composition and synodic lunar cycle periodicities. Braz J Med Biol Res 30(2): 275–279.PubMedGoogle Scholar
  69. Mikulecky M, Rovensky J. (2000) Gout attacks and lunar cycle. Med Hypoth 55(1): 24–25.CrossRefGoogle Scholar
  70. Miller CD, Pen F. (1959) Composition and nutritive value of Palolo (Palolo siciliensi Grube). Pacif Sci 13: 191–194.Google Scholar
  71. Morgan E. (1984) The pressure-responses of marine invertebrates: a psychophysical perspective. Zool J Linn Soc 80: 209–230.Google Scholar
  72. Morgan E. (1991) An appraisal of tidal activity rhythms. Chronobiol Intl 8(4): 283–306.Google Scholar
  73. Naylor E. (1960) Locomotor rhythms in Carcinus maenas (L.) from non-tidal conditions. J Exp Biol 37: 481–488.Google Scholar
  74. Naylor E. (1996) Crab clockwork: the case for interactive circatidal and circadian oscillators controlling rhythmic locomotor activity of Carcinus maenas. Chronobiol Intl 13(3): 153–161.Google Scholar
  75. Naylor E. (1997) Crab clocks rewound. Chronobiol Intl 14(4): 427–430.Google Scholar
  76. Neuman D. (1981) Tidal and lunar rhythms. In: Handbook of Bahvioral Neurobiology, Vol. 4. Biological Rhythms. Aschoff J, ed. New York: Plenum Press, pp. 351–380.Google Scholar
  77. Page TL, Larimer JL. (1975a) Neural control of circadian rhythmicity in the crayfish: I. The locomotor activity rhythm. J Comp Physiol 97: 59–80.CrossRefGoogle Scholar
  78. Page TL, Larimer JL. (1975b) Neural control of circadian rhythmicity in the crayfish: II. The ERG amplitude rhythm. J Comp Physiol 97: 81–96.CrossRefGoogle Scholar
  79. Palmer JD, Round FE. (1967) Persistent, vertical-migration rhythms in benthic microflora: VI. The tidal and diurnal nature of the rhythm in the diatom Hantzschia virgata. Biol Bull 132: 44–55.CrossRefGoogle Scholar
  80. Palmer JD. (1973) Tidal rhythms: the clock control of the rhythmic physiology of marine organisms. Biol Rev 48: 377–418.Google Scholar
  81. Palmer JD. (1974) Biological Clocks in Marine Organisms. The Control of Physiological and Behavioral Tidal Rhythms. New York: John Wiley & Sons, 173 pp.Google Scholar
  82. Palmer JD, Williams BG. (1986) Comparative studies of tidal rhythms: II. The dual clock control of the locomotor rhythms of two decapod crustaceans. Mar Behav Physiol 12: 269–278.Google Scholar
  83. Palmer JD. (1995a) The Biological Rhythms and Clocks of Intertidal Animals. New York: Oxford University Press, 217 pp.Google Scholar
  84. Palmer JD. (1995b) Review of the dual-clock control of tidal rhythms and the hypothesis that the same clock governs both circatidal and circadian rhythms. Chronobiol Intl 12(5): 299–310.Google Scholar
  85. Palmer JD. (1997) Dueling hypotheses: circatidal versus circalunidian battle basics-second engagement. Chronobiol Intl 14(4): 431–433.Google Scholar
  86. Palmer JD. (2000) The clocks controlling the tide-associated rhythms of intertidal animals. Bioessays 22(1): 32–37 (Review).PubMedCrossRefGoogle Scholar
  87. Panda S, Hogenesch JB, Kay SA. (2003) Circadian light input in plants, flies and mammals. Novatis Found Symp 253: 73–82; Discussion 82–88, 102–109, 281–284.CrossRefGoogle Scholar
  88. Parvathy Rajan K, Kharour HH, Lockwood APM. (1979) Rhythmic cycles of blood sugar concentrations in the crab Carcinus maenas. In: Cyclic Phenomena in Marine Plants and Animals. Naylor E, Hartnoll RG, eds. New York: Pergamon, pp. 451–458.Google Scholar
  89. Payne SR, Deardon DJ, Abercrombie GF, Carlson GL. (1989) Urinary retention and the lunisolar cycle: is it a lunatic phenomenon? BMJ 299(6715): 1560–1562.PubMedGoogle Scholar
  90. Pearse JS, Pearse VB, Giese AC, Sothern RB, Halberg F. (1985) Circannual rhythm with similar timing characterizes gonadal index of a marine invertebrate (ochre star) studied 30 years apart (abstract). Chronobiologia 12(3): 264.Google Scholar
  91. Pearse JS. (1990) Lunar reproductive rhythms in marine invertebrates: maximizing fertilization? In: Advances in Invertebrate Reproduction 5. Hoshi M, Yamashita O, eds. New York: Elsevier, pp. 311–316.Google Scholar
  92. Pekeris CL. (1940) Notes on tides in wells. In: American Geophysical Union Transactions. Part II: 21st Annual Meeting, April, 1940. Washington, DC: National Research Council, pp. 212–213.Google Scholar
  93. Poolsanguan B, Uglow RF. (1974) Quantitative changes in blood sugar levels of Crangon vulgaris. J Comp Physiol 93: 1–6.CrossRefGoogle Scholar
  94. Powell BL. (1962) Types, distribution and rhythmical behaviour of the chromatophores of juvenile Carcinus maenas (L.). J Anim Ecol 31: 251–161.CrossRefGoogle Scholar
  95. Powell BL. (1966) The control of the 24 hour rhythm of colour change in juvenile Carcinus maenas (L.). Proc R Ir Acad [B] 64(21): 379–399.Google Scholar
  96. Presser HB. (1974) Temporal data relating to the human menstrual cycle. In: Biorhythms and Human Reproduction. Ferin M, Halberg F, Richert RM, Vande Wiele R, eds. New York: John Wiley & Sons, Inc., pp. 145–160.Google Scholar
  97. Rinehart JS. (1976) Influence of tidal strain on geophysical phenomena. In: Proceedings of 7th International Symposium on Earth Tides. Szadeczky-Kardoss G, ed. Stuttgart: Nägele Obermiller, pp. 181–185.Google Scholar
  98. Salisbury FB. (1981) Twilight effect: initiating dark measurement in photoperiodism of Xanthium. Plant Physiol 67: 1230–1238.PubMedGoogle Scholar
  99. Salisbury FB, Ross CW. (1992) Plant Physiology, 4th edn. Belmont: Wadsworth, 682 pp.Google Scholar
  100. Sha LR, Xu NT, Song XH, Zhang LP, Zhang Y. (1989) Lunar phases, myocardial infarction and hemorrheological character. A Western medical study combined with appraisal of the related traditional Chinese medical theory. Chin Med J (Engl) 102(9): 722–725.Google Scholar
  101. Sinclair RM. (1987) Moonlight and circadian rhythms. Science 235(4785): 145.PubMedCrossRefGoogle Scholar
  102. Smolensky M, Lamberg L. (2000) The Body Clock Guide to Better Health. New York: Henry Holt & Co., 428 pp.Google Scholar
  103. Sok M, Mikulecky M, Erzen J. (2001) Onset of spontaneous pneumothorax and the synodic lunar cycle. Med Hypoth 57(5): 638–641.CrossRefGoogle Scholar
  104. Spruyt E, Verbelen J-P, De Greef JA. (1987) Expression of circaseptan and circannual rhythmicity in the imbibition of dry stored bean seeds. Plant Physiol 84: 707–710.PubMedCrossRefGoogle Scholar
  105. Sullivan W. (1981) Land tides may affect earth’s core of rotation. The New York Times, 23 August 1981 (Sunday), Late City Final Edition. Section 1, Part 2, page 56.Google Scholar
  106. Sundararaj BI, Vasal S, Halberg F. (1973) Circannual rhythmic ovarian recrudescence in the catfish, Heteropneustes fossilis. Intl J Chronobiol 1: 362–363.Google Scholar
  107. Sundararaj BI, Vasal S, Halberg F. (1982) Circannual rhythmic ovarian recrudescence in the catfish, Heteropneustes fossilis (Bloch). In: Toward Chronopharmacology. Takahashi R, Halberg F, Walker C, eds. New York: Pergamon, pp. 319–337.Google Scholar
  108. Vogt KA, Beard KH, Hammann S, Palmiotto JO, Vogt DJ, Scatena FN, Hecht BP. (2002) Indigenous knowledge informing management of tropical forests: the link between rhythms in plant secondary chemistry and lunar cycles. Ambio 31(6): 485–490.PubMedCrossRefGoogle Scholar
  109. Von Gaertner T, Braunroth E. (1935) [About the influence of moonlight on flowering date of long-and short-day plants.] [German]. Botan Centralblatt Abt A53: 554–563.Google Scholar
  110. Williams BG, Naylor E. (1969) Synchronization of the locomotor tidal rhythms of Carcinus. J Exp Biol 51: 715–725.Google Scholar
  111. Williams BG. (1998) The lack of circadian timing in two intertidal invertebrates and its significance in the circatidal/circalunidian debate. Chronobiol Intl 15(3): 205–218.Google Scholar
  112. Youthed GJ, Moran VC. (1969) The lunar-day activity rhythm of myrmeleontid larvae. J Insect Physiol 15: 1259–1271.CrossRefGoogle Scholar
  113. Zürcher E, Cantiani M-G, Sorbetti-Guerri F, Michel D. (1998) Tree stem diameters fluctuate with tide. Nature 392: 665–666.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Personalised recommendations