Advertisement

BIOLOGICAL CONTROL OF MOSQUITOES: MANAGEMENT OF THE UPPER RHINE MOSQUITO POPULATION AS A MODEL PROGRAMME

  • Norbert Becker
Part of the Progress in Biological Control book series (PIBC, volume 2)

Abstract

Biological control is defined as the use of living organisms to reduce the target populations of pests. Biological control includes the use of predators, parasites and pathogens (Eilenberg et al, 2001). It aims to reduce the target population to an acceptable level and at the same time to avoid side-effects to the ecosystem. As far as mosquito control is concerned, biological control measures should integrate the protection of humans from mosquitoes with the conservation of biodiversity, whilst avoiding toxicological and eco-toxicological effects. As a result, the regulatory power of the ecosystem is maintained by protecting the existing community of mosquito predators.

Keywords

Biological Control Bacillus Thuringiensis Breeding Site Mosquito Larva Mosquito Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, A. (1981): Bacillus thuringiensis serovar. israelensis (ABG-6108) against chironomids and some nontarget aquatic invertebrates. J. Invert. Pathol. 38: 264–272.CrossRefGoogle Scholar
  2. Aly, C. (1985): Germination of Bacillus thuringiensis var. israelensis spores in the gut of Aedes larvae (Diptera: Culicidae). J. Invertebr. Pathol. 45: 1–8.PubMedCrossRefGoogle Scholar
  3. Baumann, P.M., Clark, A., Baumann, L., and Broadwell, A. H. (1991): Bacillus sphaericus as a mosquito pathogen: Properties of the organism and its toxins. Microbiol. Revs. 55: 425–436.Google Scholar
  4. Becker, N., and Ludwig, M., (1993): Investigations on possible resistance in Aedes vexans field populations after a 10-year application of Bacillus thuringiensis israelensis. J. Am. Mosq. Control Assoc. 9: 221–224.PubMedGoogle Scholar
  5. Becker, N., and Margalit, J. (1993): Control of Dipteran pests by Bacillus thuringiensis, in: Bacillus thuringiensis: Its uses and future as a biological insecticide. (P. Entwistle, M.J. Bailey, J. Cory, and S. Higgs eds.), John Wiley & Sons, Ltd., Sussex, England.Google Scholar
  6. Becker, N., and Rettich, F. (1994): Protocol for the introduction of new Bacillus thuringiensis israelensis products into the routine mosquito control program in Germany. J. Am. Mosq. Control Assoc. 10(4): 527–533.PubMedGoogle Scholar
  7. Becker, N., Djakarta, S., Kaiser, A., Zulhasril, O., and Ludwig, H. W. (1991): Efficacy of a new tablet formulation of an asporogenous strain of Bacillus thuringiensis israelensis against larvae of Aedes aegypti. Bull Soc. Vector Ecol. 16(1): 176–182.Google Scholar
  8. Becker, N., Zgomba, M., Ludwig, M., Petrić, D., and Rettich, F. (1992): Factors influencing the activity of Bacillus thuringiensis var. israelensis treatments. J. Am. Mosq. Control Assoc. 8: 285–289.PubMedGoogle Scholar
  9. Becker, N., Ludwig, M., Beck, M., and Zgomba, M. (1993): The impact of environmental factors on the efficacy of Bacillus sphaericus against Culex pipiens. Bull. Soc. Vector Ecol. 18: 61–66.Google Scholar
  10. Becker, N., Zgomba, M., Petric, D., Beck, M., and Ludwig, M. (1995): Role of larval cadavers in recycling processes of Bacillus sphaericus. J. Am. Mosq. Control Assoc. 11 329–334.PubMedGoogle Scholar
  11. Becker, N. (2002): Sterilization of Bacillus thuringiensis israelensis products by gamma radiation. J. Am. Mosq. Control Assoc. 18: 57–62.PubMedGoogle Scholar
  12. Becker, N. (2003): Ice granules containing endotoxins of microbial control agents for the control of mosquito larvae – a new formulation technique. J. Am. Mosq. Control Assoc. 19: 63–66.PubMedGoogle Scholar
  13. Becker, N. et al. (2003): Mosquitoes and their control. Kluwer Academic Publishers, London, pp 497.Google Scholar
  14. Berry, C., Hindley, J., and Oei, C. (1991): The Bacillus sphaericus toxins and their potential for biotechnological development, in: Biotechnology for biological control of pests and vectors, (K. Maramorosch, ed.), CRC Press, Boca Raton, FL, pp 35–51.Google Scholar
  15. Bickley, W.E. (1980): Notes on the status of Aedes cinereus hemiteleus Dyar. Mosq. Syst. 12: 357–370.Google Scholar
  16. Broadwell, A.H., Baumann, L., and Baumann, P. (1990): Larvicidal properties of the 42 and 51 kilodalton Bacillus sphaericus proteins expressed in different bacterial hosts: Evidence for a binary toxin. Curr. Microbiol. 21: 361–366.CrossRefGoogle Scholar
  17. Chang, C., Yu, Y.-M., Dai, S.-M., Lew, S.K., and Gill, S.S. (1993): High-level cryIVD and cytA gene expression in Bacillus thuringiensis does not require the 20 kilodalton protein, and the coexpressed gene products are synergistic in their toxicity of mosquitoes. Appl. Environ. Microbiol. 59: 815–821.PubMedGoogle Scholar
  18. Charles, J.-F., Nielsen-LeRoux, C. (1996): Les bacteries entomopathogenes: mode d'action sur les larves de moustiques et phenomenes de resistance. Ann. Inst. Pasteur, Actualites, 7: 233–245.CrossRefGoogle Scholar
  19. Chilcott, C.N. and Ellar, D.J. (1988): Comparative toxicity of Bacillus thuringiensis var. israelensis crystal proteins in vivo and in vitro. J. Gen. Microbiol. 134: 2551–2558.PubMedGoogle Scholar
  20. Colbo, A.H., and Undeen, A. H. (1980): Effect of Bacillus thuringiensis var. israelensis on non-target insects in stream trials for control of Simuliidae. Mosq. News 40: 368–371.Google Scholar
  21. Davidson, E. W. (1984): Microbiology, pathology and genetics of Bacillus sphaericus biological aspects which are important to field use. Mosq. News 44: 147–152.Google Scholar
  22. Davidson, E.W. (1990): Development of insect resistance to biopesticides. Proc. Second Sympos. on Biocontrol, Brasilia, Oct. 1990, p 19.Google Scholar
  23. Davidson, E.W., and Becker, N. (1996): Microbial control of vectors, in: The Biology of Disease Vectors. (B.J. Beaty, and W.C. Marquardt, eds.), University Press of Colorado, pp. 549–563.Google Scholar
  24. De Barjac, H. (1983): Bioassay procedure for samples of Bacillus thuringiensis israelensis using IPS-82 standard. WHO Report TDR/VED/SWG (5) (81.3), Geneva, World Health Organization.Google Scholar
  25. Delecluse, A., Barloy, F., and Rosso, M.-L. (1996): Les bacteries pathogenes des larves de dipteres: structure et specificite des toxines. Ann. Inst. Pasteur, Actualites, 7: 217–231.CrossRefGoogle Scholar
  26. Des Rochers, B., and Garcia, R. (1984): Evidence for persistence and recycling of Bacillus sphaericus. Mosq. News 44: 160–165.Google Scholar
  27. Eilenberg, J.; Hajek, A.E.; Lomer, C. (2001): Suggestions for unifying the terminology in biological control. BioControl, 46: 387–400.CrossRefGoogle Scholar
  28. Federici, B.A., Lüthy, P., and Ibarra, J.E. (1990): Parasporal body of Bacillus thuringiensis israelensis: Structure, protein composition, and toxicity, in: Bacterial control of mosquitoes and blackflies: biochemistry, genetics and applications of Bacillus thuringiensis israelensis and Bacillus sphaericus. (H. de Barjac, and D. Sutherland eds.), Rutgers Univ. Press, New Brunswick, N.J., pp. 45–65.Google Scholar
  29. Fillinger, U., B.G.J. Knols and N. Becker. 2003. Efficacy and efficiency of new Bacillus thuringiensis var. israelensis and Bacillus sphaericus formulations against afrotropical anophelines in western Kenya. Tropical Medicine and International Health, 8: 37–47.PubMedCrossRefGoogle Scholar
  30. Garcia, R., Des Rochers, B., and Tozer, W. (1981): Studies on Bacillus thuringiensis var. israelensis against mosquito larvae and other organisms. Proc. Calif. Mosq. Vector Control Assoc. 49: 25–29.Google Scholar
  31. Georghiou, G.P., and Wirth., M. (1997): The influence of single vs multiple toxins of Bacillus thuringiensis subsp. israelensis on the development of resistance in Culex quinquefasciatus (Diptera: Culicidae). Appl. Environ. Microbiol. 63 (3–4): 1095–1101.PubMedGoogle Scholar
  32. Goldberg, L.H., and Margalit, J. (1977): A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergenti, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culexpipiens. Mosq. News 37: 355–358.Google Scholar
  33. Hertlein, B.C., Levy, R., and Miller, T. W., Jr. (1979): Recycling potential and selective retrieval of Bacillus sphaericus from soil in a mosquito habitat. J. Invertebr. Pathol. 33: 217–221.CrossRefGoogle Scholar
  34. Höfte, H., and Whiteley, H.R. (1989): Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53: 242–255.PubMedGoogle Scholar
  35. Hougard, J.-M., and Back, C. (1992): Perspectives on the bacterial control of vectors in the tropics. Parasitai. Today 8: 364–366.CrossRefGoogle Scholar
  36. Ibarra, J.E. and Federici, B.A. (1986): solation of a relatively nontoxic 65-kilodalton protein inclusion from the parasporal body of Bacillus thuringiensis subsp. israelensis. J. Bacterial. 165: 527–533.Google Scholar
  37. Kroeger, A., Dehlinger, U., Burkhardt, G., Anaya, H., and Becker, N., 1995. Community based dengue control in Columbia: people's knowledge and practice and the potential contribution of the biological larvicide B. thuringiensis israelensis (Bacillus thuringiensis israelensis). Trop. Med. Parasitai. 46: 241–246.Google Scholar
  38. Kurtak, D., Back, C., Chalifour, A., 1989. Impact of B. t. israelensis on black-fly control in the onchocerciasis control program in West Africa. Israel J. Entamai. 23: 21–38.Google Scholar
  39. Lacey, L.A., 1990. Persistence and formulation of Bacillus sphaericus, in: Bacterial control of mosquitoes and blackflies: biochemistry, genetics and applications of Bacillus thuringiensis israelensis and Bacillus sphaericus. (H. de Barjac, and D. Sutherland, eds.), Rutgers Univ. Press, New Brunswick, N.J., pp. 284–294.Google Scholar
  40. Lamborn, R.H., 1890. Dragon flies vs. mosquitoes. Can the mosquito pest be mitigated? Studies in the life history of irritating insects, their natural enemies, and artificial checks by working entomologists. D. Appleton Co., New York, 202 pp.Google Scholar
  41. Legner, E.F., 1995. Biological control of Diptera of medical and veterinary importance. J. Vector Ecol.., 20, 59–120.Google Scholar
  42. Ludwig, M., M. Beck, M. Zgomba and N. Becker. 1994. The Impact of Water Quality on the Persistence of Bacillus sphaericus. Bull. Soc. Vector Ecol., 19: 43–48.Google Scholar
  43. Lüthy, P., 2001. La lotta biologica control le zanzare alle Bolle di Magadino, in: Contributo alla conoscenza delle Bolle di Magadino. (N. Patocchi, ed.), pp. 139–145.Google Scholar
  44. Mahilum, M., M. Madon, V. Storch, M. Ludwig and N. Becker. 2005. Evaluation of the present dengue situation and control tools against Aedes aegypti in Cebu City, Philippines.Google Scholar
  45. Margalit, J., and Dean, D., 1985. The story of Bacillus thuringlensis israelensis (B.t.i.). J. Am. Mosq. Control Assoc. 1: 1–7.PubMedGoogle Scholar
  46. McGaughey, W.H. 1985. Insect resistance to the biological insecticide Bacillus thuringlensis. Science 229: 193–195.CrossRefGoogle Scholar
  47. Merdić, E. & Lovaković, T. 2001: Population dynamic of Aedes vexans and Ochlerotatus sticticus in flooded areas of the river Drava in Osijek., Croatia. J. Am. Mosq. Ass. 17: 275–280.Google Scholar
  48. Merdić, E. & Sudarić, M. 2003: Effects of prolonged high water level on the mosquito fauna in Kopački rit Nature Park. Periodicum biologorum 1052: 189–193.Google Scholar
  49. Miura, T., Takahashi, R.M., and Mulligan, F.S., 1980. Effects of the bacterial mosquito larvicide, Bacillus thuringlensis serotype H-14 on selected aquatic organisms. Mosq. News 40: 619–622.Google Scholar
  50. Molloy, D., and Jamnback, H., 1981. Field evaluation on Bacillus thurlngelnsls var. Israelensis as a blackly biocontrol agent and its effect on nontarget stream insects. J. Econ. Entomol. 74: 314–318.Google Scholar
  51. Monnerat et al. (2004): Screening of Brazilian Bacillus sphaericus strains for high toxicity against Culex qulnquefasclatus and Aedes aegypti. J. Appl. Ent., Vol. 128(7): 469–473.CrossRefGoogle Scholar
  52. Mulla, M.S., Federici, B.A., and Darwazeh, H.A., 1982. Larvicidal efficacy of Bacillus thuringlensis serotype H-14 against stagnant water mosquitoes and its effects on nontarget-organisms. Env. Entomol. 11: 788–795.Google Scholar
  53. Mulla, M.S., Darwazeh, H.A., and Zgomba, M., 1990. Effect of some environmental factors on the efficacy of Bacillus sphaericus 2362 and Bacillus thuringlensis (H-14) against mosquitoes. Bull. Soc. Vector Ecol. 15: 166–175.Google Scholar
  54. Mulligan III., F.S., Schaefer, C.H., and Wilder, W.H., 1980. Efficacy and persistence of Bacillus sphaericus and B. thuringlensis H-14 against mosquitoes under laboratory and field conditions. J. Econ. Entomol. 73: 684–688.Google Scholar
  55. Nielsen-LeRoux, C., Charles, J.F., Thiery, I., and Georghiou, G.P. 1995. Resistance in a laboratory population of Culex qulnquefasclatus (Diptera: Culicidae) to Bacillus sphaericus binary toxin is due to a change in the receptor on midgut brush-border membranes. Eur. J. Blochem. 228: 206–210.CrossRefGoogle Scholar
  56. Pletsch, D. 1965. Informe sobre una mision efectuada en España en Septiembre-Noviembre de 1963 destinada a la certificación de la erradicación del paludismo. Revista de Sanidad e Higiene Pública. 7,8,9: 309–355.Google Scholar
  57. Priest, F.G., 1992. Biological control of mosquitoes and other biting flies by Bacillus sphaericus and Bacillus thuringlensis. J. Appl. Bacterial. 72: 357–369.Google Scholar
  58. Priest, F.G., L. Ebdrup, V. Zahner and P. E. Carter (1997). Distribution and characterization of mosquitocidal toxin genes in some stains of Bacillus sphaericus. Appl. Environ. Mlcroblol. 63: 1195–1198.Google Scholar
  59. Sinegre, G., Babinot, M., Quermel, J.M., and Gavon, B., 1994. First field occurrence of Culex pipiens resistance to Bacillus sphaericus in southern France. Abstr. VIIIth Eur. Meet. Society of Vector Ecology, Barcelona, Sept. 5–8, 17.Google Scholar
  60. Singer, S., 1973. Insecticidal activity of recent bacterial isolates and their toxins against mosquito larvae. Nature (London) 244: 110–111.CrossRefGoogle Scholar
  61. Tabashnik, B.E., Cushing, N.L., Finson, N., and Johnson, M.W., 1990. Development of resistance to Bacillus thuringiensis in field populations of Plutella xylostella in Hawaii. J. Econ. Entomol. 83: 1671–1676.Google Scholar
  62. Thanabalu, T., Hindley, J., Jackson-Yap, J., and Berry, C., 1991. Cloning, sequencing and expression of a gene encoding a 100-kilodalton mosquitocidal toxin from Bacillus sphaericus SSII-1. J. Bacterial. 173: 2776–2785.Google Scholar
  63. Weiser, J., 1984. A mosquito-virulent Bacillus sphaericus in adult Simulium damnosum from Northern Nigeria. Zbl. Mikrobiol. 139: 57–60.Google Scholar
  64. Weiser, J., 1991. Biological Control of Vectors. John Wiley & Sons Ltd., West Sussex, 189 pp.Google Scholar
  65. WHO, 1999. Bacillus thuringiensis, Environmental Health Criteria 217, International Programme on Chemical Safety. World Health Organization Geneva, ISBN 92 4 157217 5.Google Scholar
  66. Wickramasinghe, B., and Mendis, C.L., 1980. Bacillus sphaericus spores from Sri Lanka demonstrating rapid larvicidal activity on Culex quinquefasciatus. Mosq. News 40: 387–389.Google Scholar
  67. Zgomba, M., Petrić, D., Ćupina A. and Popov O. (1999): Impact of Bacillus thuringiensis var. israelensis and/or adulticide treatmnents on CO2 baited trap catches. Biotechnology of Bacillus thuringiensis, Vol. 3. Science Press Beijing, pg 257Google Scholar
  68. Zgomba, M., Petrić, A., Ćupina, A., Marković, I. (2001): Economic and mosquito suppression impact of different strategies in control programs of the Danube floodplains. 3rd International Congress of Vector Ecology. Barcelona, Spain, 16–19 September. Abstract volume, p. 15–16.Google Scholar
  69. Zgomba M. and Petrić D. (2003) Integrated Mosquito Control in the Vojvodina Province. Faculty of Agriculture, University of Novi Sad, pp 32.Google Scholar
  70. Zgomba M., Petrić D., Ignjatović Ćupina A., Konjević A., Marinković D. (2004): Application of Bacillus thuringiensis var. israelensis in control of Simulium ornatum Meigen 1818 (complex) (Diptera: Simuliidae), the most abundant mammophilic blackly species in the region of Novi Sad. The 3rd EMCA Workshop. Osjek, Croatia, October 6th-9th, 2004. The Program and Abstract Book. pg. 22–23.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Norbert Becker

There are no affiliations available

Personalised recommendations