Industrial and Biomedical Applications

  • Frank Smith
  • Nicholas Ovenden
  • Richard Purvis
Part of the Solid mechanics and its applications book series (SMIA, volume 129)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Gent RW, Dart NP, Cansdale JT. “Aircraft icing”, Phil Trans Roy Soc A, 358, pp. 2873-2911, 2000.MATHCrossRefGoogle Scholar
  2. 2.
    Josserand C, Zaleski S. “Droplet splashing on a thin liquid film”, Phys Fluids, 15, pp. 1650-1657, 2003.CrossRefGoogle Scholar
  3. 3.
    Wilson SK. “A mathematical model for the initial stages of fluid impact in the presence of a cushioning fluid layer”, J Eng Maths, 25, pp. 265-285, 1991.MATHCrossRefGoogle Scholar
  4. 4.
    . Purvis R, Smith FT. “Large droplet impact on water layers”, Proc. 42 nd Aerospace Sci Conference, Reno, NV, USA, Jan. 5-8, 2004, paper no. 2004-0414.Google Scholar
  5. 5.
    . Purvis R, Smith FT. “Air-water interactions near droplet impact”, Euro J Applied Maths, to appear, 2004.Google Scholar
  6. 6.
    . Purvis R, Smith FT. “Droplet impact on water layers: post-impact analysis and computations”, Phil Trans Roy Soc A, in press, 2004.Google Scholar
  7. 7.
    Smith FT, Li L, Wu G-X. “Air cushioning with a lubrication / inviscid balance”, J Fluid Mech, 482, pp. 291-318, 2003.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Brada M, Kitchen ND. “How effective is radiosurgery for arteriovenous malformations?”, J Neurol Neurosurg Psychiatry, 68, pp. 548-549, 2000.CrossRefGoogle Scholar
  9. 9.
    . Hademenos GJ, Massoud TF and Vinuela F. “A biomathematical model of intercranial arteriovenous malformations based on electric network analysis: theory and haemodynamics”, N eurosurgery, 38(5), pp. 1005-1015.Google Scholar
  10. 10.
    Zhao Y, Brunskill CT, Lieber BB. “Inspiratory and expiratory steady flow analysis in a model symmetrically bifurcating airway”, J Biomech Eng, 119, pp. 52-65, 1997.CrossRefGoogle Scholar
  11. 11.
    Smith FT. “Upstream interactions in channel flows”, J Fluid Mech, 79, pp. 631-655, 1997.CrossRefGoogle Scholar
  12. 12.
    Smith FT, Ovenden NC, Franke P, Doorly DJ. “What happens to pressure when a flow enters a side branch?”, J Fluid Mech, 479, pp. 231-258, 2003.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Smith FT, Jones MA. “AVM modelling by multi-branching tube flow: large flow rates and dual solutions”, IMA J Maths Medicine Biol, 20, pp. 183-204, 2003.MATHCrossRefGoogle Scholar
  14. 14.
    Smith FT, Dennis SCR, Jones MA, Ovenden NC, Purvis R, Tadjfar M.“ Fluid flows through various branching tubes”, J Eng Maths, 47, pp. 277-298, 2003.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Frank Smith
    • 1
  • Nicholas Ovenden
    • 1
  • Richard Purvis
    • 1
  1. 1.Mathematics DepartmentUniversity College LondonUK

Personalised recommendations