Skip to main content

OF COMPLEX INTERACTIONS OF LITHOLOGIC, STRUCTURAL AND TOPOGRAPHIC BOUNDARY CONDITIONS, CLIMATE CHANGE AND ACTIVE TECTONICS ROCK AVALANCHING IN THE NW ARGENTINE ANDES AS A RESULT

  • Conference paper
Landslides from Massive Rock Slope Failure

Part of the book series: NATO Science Series ((NAIV,volume 49))

Abstract

In NW Argentina rock avalanching occurs in two geomorphic settings: A) narrow valleys draining large basins and B) mountain fronts bordered by wide piedmont areas. In the narrow valley environment, the deposits are relatively young. Landslide events concentrate during humid climate periods, and they occur with recurrence intervals of a few ka. In contrast, the deposits in piedmont settings are significantly older, while rock avalanches occur with recurrence intervals of several tens ka, and do not show any direct relation with climate change. Common to the regional distribution in both settings is the influence of lithology, structural control, as well as tectonic activity. Rock avalanches have occurred only in granites, low-grade metamorphic rocks and coarse clastic sedimentary rocks. These lithologies are competent enough to form steep slopes and provide planar structures that dip towards the valley. Because all rock-avalanches originated in the hanging wall of reverse faults with important Neogene displacement causing mountain-front oversteepening, it is inferred that most collapses were tectonically conditioned and/or triggered. However, only at a few sites detailed sedimentologic studies of related sediments show unequivocally that strong seismic activity triggered landsliding. Geological evidence and comparison with empirical data suggest that these earthquakes have been either crustal and of magnitude > M 7 or very shallow and of a magnitude > M 5.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J. (1981) Earthquake-dammed lakes in New Zealand, Geology 9, 215–219.

    Article  Google Scholar 

  2. Adushkin, V.V. (2000) Explosive initiation of creative processes in nature, Comb. Expl. and Shock Waves 36, 695–703.

    Article  Google Scholar 

  3. Aylsworth, M., Lawrence, D.E. and Guertin, J. (2000) Did two massive earthquakes in the Holocene induce widespread landsliding and near-surface deformation in part of Ottawa Valley, Canada?, Geology 28, 903–906.

    Article  Google Scholar 

  4. Baker, P.A., Rigsby, C.A., Seltzer, G.O., Fritz, S.C., Lowenstein, T.K., Bacher, N.P. and Veliz, C. (2001a) Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano, Nature 409, 698–701.

    Article  Google Scholar 

  5. Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D. and Broda, J.P. (2001b) The history of South American tropical precipitation for the past 25,000 years, Science 291, 640–643.

    Article  Google Scholar 

  6. Castano, D.E. (1997) Teremotos históricos, sismicidad y tectónica en el noroeste Argentino, VII Congreso Geológico chileno. Antofagasta, 665–669.

    Google Scholar 

  7. Densmore, A.L. and Hovius, N. (2000) Topographic fingerprints of bedrock landslides, Geology 28, 371–374.

    Article  Google Scholar 

  8. Engdahl, E.R., van der Hilst, R. and Buland, R. (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination, Bull. Seis. Soc. Am. 88, 722–743.

    Google Scholar 

  9. Evans, S.G. (1989) Rockavalanche run-up record, Nature 340, 271.

    Article  Google Scholar 

  10. Evans, S.G., Aitken, J.D., Wetmiller, R.J. and Horner, R.B. (1987) A rock avalanche triggered by the October 1985 Nahami earthquake, District of Mackenzie, N.W.T., Can. J. Earth Sci. 24, 176–184.

    Google Scholar 

  11. EVARSA (Evaluación de Recursos Sociedad Anonima) (1991) Estadística Hidrológica (vols. 1, 2), Buenos Aires, Secretaría de Energía, pp. 1–651.

    Google Scholar 

  12. Fauqué, L. and Tchilinguirian, P. (2002) Villavil rockslides, Catamarca Province, Argentina in Evans, S.G. and DeGraff, J.V. (eds.), Catastrophic rockslides: Effects, occurrence, and mechanisms, Geological Society of America Reviews in Engineering Geology 15, 303–324.

    Google Scholar 

  13. Fauqué, L. and Strecker, M.R. (1988) Large rock avalanche deposits (Sturzstrome, sturzstroms) at Sierra Aconquija, northern Sierras Pampeanas, Argentina, Ec. Geol. Helv. 81, 579–592.

    Google Scholar 

  14. Fox, A.N. and Strecker, M.R. (1991) Pleistocene and modern snowlines in the Central Andes (24-28°S), Bamb. Geogr. Schriften 11, 169–182.

    Google Scholar 

  15. González Bonorino, F. (1951) Descripción Geológica de la Hoja 12e, Aconquija (Catamarca-Tucumán), Dirección Nacional de Minería, pp. 50.

    Google Scholar 

  16. González Diaz, E.F., Costa, C., Giaccardi, A., Bierman, P.E. and Caffee, M. (1999) Edades de cosmonuclídeos 10Be y 26Al en avalanchas de rocas de la Sierra de San Juan: Implicancias paleosismológicas, XIV Congreso Geológico Argentino. Salta, 81–82.

    Google Scholar 

  17. González, O.E., Hongn, F.D. and Mon, R. (1991) Estructura de la Sierra Laguna Blanca y zonas aledañas, Provincia de Catamarca, Rev. de la Asoc. Geol. Arg. 46, 299–308.

    Google Scholar 

  18. Grier, M.E. (1990) The influence of the Cretaceous Salta rift basin on the development of Andean structural geometries, NW Argentine Andes [PhD thesis], Faculty of the Graduate School, Cornell University, pp. 178.

    Google Scholar 

  19. Grier, M.E., Salfity, J.A. and Allmendinger, R.W. (1991) Andean reactivation of the Cretaceous Salta rift, northwestern Argentina, J. of S. Am. Earth Sci. 4, 351–372.

    Article  Google Scholar 

  20. Grosjean, M., Valero-Garcés, B.L., Geyh, M.A., Messerli, B., Schotterer, U., Schreier, H. and Kelts, K. (1997) Mid and late Holocene limnogeology of the Laguna del Negro Francisco, northern Chile, and its paleoclimatic implications, The Holocene 7, 151–159.

    Google Scholar 

  21. Harp, E.L., Raymond, C.W. and Wieczorek, G.F. (1981) The Guatemala earthquake of February 4, 1976 - Landslides from the February 4, 1976, Guatemala earthquake, Geol. Surv. Prof. Pap. 1204-A, 1–35.

    Google Scholar 

  22. Haselton, K., Hilley, G. and Strecker, M.R. (2002) Average Pleistocene climatic patterns in the southern Central Andes: Controls on mountain glaciation and paleoclimate implications, J. of Geol. 110, 211–226.

    Article  Google Scholar 

  23. Havenith, H.-B., Jongmans, D., Abdrakmatov, K., Trefois, P., Delvaux, D. and Torgoev, I.A. (2000) Geophysical investigations of seismically induced surface effects: case study of landslides in the Suusamyr valley, Kyrgyzstan, Surv. in Geophys. 21, 349–369.

    Google Scholar 

  24. Hempton, M.R. and Dewey, J.F. (1983) Earthquake-induced deformational structures in young lacustrine sediments, East Anatolian Fault, southeast Turkey, Tectonophys. 98, T7–T14.

    Article  Google Scholar 

  25. Hermanns, R.L. (1999) Spatial-temporal distribution of mountain-front collapse and formation of giant landslides in the arid Andes of northwestern Argeintina (24-28° S, 65-68° W) [PhD thesis], Mathematisch-Naturwissenschaftliche Fakultät, Universität Potsdam, pp. 123.

    Google Scholar 

  26. Hermanns, R.L., Niedermann, S., Ivy-Ochs, S., Kubik, P.W. and Strecker, M.R. (2002a) Paleoseismic triggering of multiple paleolandslides in the NW-Argentine Andes, EGS. Nice.

    Google Scholar 

  27. Hermanns, R.L., Niedermann, S., Strecker, M.R., Trauth, M.H., Alonso, R.N. and Fauque, L. (2002b) Prehistoric rock avalanches in the NW-Argentine Andes: boundary conditions and hazard assessment, 1st European Conference on Landslides. Prague, 199–205.

    Google Scholar 

  28. Hermanns, R.L., Niedermann, S., Villanueva Garcia, A., Sosa Gomez, J. and Strecker, M.R. (2001) Neotectonics and catastrophic failure of mountain fronts in the southern intra-Andean Puna Plateau, Argentina, Geology 29, 619–623.

    Article  Google Scholar 

  29. Hermanns, R.L., Trauth, M.H., Niedermann, S., McWilliams, M. and Strecker, M.R. (2000) Tephrochronologic constraints on temporal distribution of large landslides in northwest Argentina, J. of Geol. 108, 35–52.

    Article  Google Scholar 

  30. Hermanns, R.L. and Strecker, M.R. (1999) Structural and lithological controls on large Quaternary rock avalanches (sturzstroms) in arid northwestern Argentina, Geol. Soc. of Am. Bull. 111, 934–948.

    Article  Google Scholar 

  31. Hooghiemstra, H. (1995) Environmental and Paleoclimatic Evolution in Late Pliocene-Quaternary Colombia in Vrba, E.S., Denton, G.H., Partridge, T.C. and Burckle, L.H. (eds.), Pateoclimate and Evolution, with Emphasis on Human Origins, Yale University Press., 249–261.

    Google Scholar 

  32. Imbrie, J., Boyle, E.A., Clemens, S.C., Duffy, A., Howard, W.R., Kukla, G., Kutzbach, J., Martinson, D.G., McIntyre, A., Mix, A.C., Molfino, B., Morley, J.J., Peterson, L.C., Pisias, N. G., Prell, W.L., Raymo, M.E., Shackelton, N.J. and Toggweiler, J.R. (1992) On the structure and origin of major glaciation cycles: 1. linear responses to Milankovitch forcing, Paleoceanogr.7, 701–738.

    Google Scholar 

  33. Jibson, R.W. and Keefer, D.K. (1993) Analysis of the seismic origin of landslides: Examples from the New Madrid seismic zone, Geol. Soc. of Am. Bull. 105, 521–536.

    Article  Google Scholar 

  34. Jordan, T.E., Isacks, B.L., Allmendinger, R.W., Brewer, J.A., Ramos, V.A. and Ando, C.J. (1983) Andean tectonics related to geometry of subducted Nazca plate, Geol. Study of Am. Bull. 94, 341–361.

    Article  Google Scholar 

  35. Keefer, D.K. (1994) The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions, Geomorph. 10, 265–284.

    Article  Google Scholar 

  36. Keefer, D.K. (1984) Landslides caused by earthquakes, Geol. Soc. of Am. Bull. 95, 406–421.

    Article  Google Scholar 

  37. Kishida, H. (1970) Characteristics of liquefaction of level sandy ground during the Tokachioki earthquake, Soils and Found. 10, 103–111.

    Google Scholar 

  38. Kleinert, K. and Strecker, M.R. (2001) Climate change in response to orographic barrier uplift: paleosol and stable isotope evidence from the late Neogene Santa Maria basin, northwestern Argentina, Geol. Soc. of Am. Bull. 113, 728–742.

    Article  Google Scholar 

  39. Ledru, M.P., Braga, P.I.S., Subiès, F., Fournier, M., Martin, L., Suguio, K., and Turcq, B. (1996) The last 50,000 years in the Neotropics (Southern Brazil) evolution of vegetation and climate, Palaeogeogr. Palaeoclimatol. Palaeoecol. 123, 239–257.

    Article  Google Scholar 

  40. Lee, K.L. and Fitton, J.A. (1969) Factors affecting the cyclic loading strength of soil, Am. Soc. for Test. Mat. Spec. Tech. Pub. 450, 71–95.

    Google Scholar 

  41. Malamud, B.D., Jordan, T.E., Alonso, R.A., Gallardo, E.F., Gonzalez, R.E. and Kelley, S.A. (1996) Pleistocene lake Lerma, Salta Province, NW Argentina. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos. Buenos Aires, 103–114.

    Google Scholar 

  42. Marco, S., Stein, M. and Abnon, A. (1996) Long-term earthquake clustering: A 50,000-year paleoseismic record in the Dead Sea Graben, J. Geophys. Res. 101, 6179–6191.

    Article  Google Scholar 

  43. Marrett, R.A., Allmendinger, R.W., Alonso, R.N. and Drake, R.E. (1994) Late Cenozoic tectonic evolution of the Puna Plateau and adjacent foreland, northwestern Argentine Andes, J. of S. Am. Earth Sci. 7, 179–207.

    Article  Google Scholar 

  44. Marrett, R. and Allmendinger, R.W. (1990) Kinematic analysis of fault-slip data, J. of Struc. Geol. 12, 973–986.

    Article  Google Scholar 

  45. Mon, R. (1976) The structure of the eastern border of the Andes in north-western Argentina, Geol. Rundschau 65, 211–222.

    Article  Google Scholar 

  46. Morgan, G.B. and London, D. (1996), Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glass, American Mineralogist 81, 1176–1185.

    Google Scholar 

  47. Müller, A.B. (2001) Die Änderungen von Niederschlagsverteilungen und deren Einfluβ auf die Provenienz von Seesedimenten während der letzten 30.000 Jahre in den nordwestargentinischen Anden [Dipl thesis], Institut für Geowissenschaften, Potsdam, pp. 80.

    Google Scholar 

  48. Niedermann, S. (2000) The 21Ne production rate in quartz revisited, Earth Planet. Sci. Lett. 183, 361–364.

    Article  Google Scholar 

  49. Niedermann, S., Graf, T., Kim, J.S., Kohl, C.P., Marti, K. and Nishiizumi, K. (1994) Cosmic-rayproduced 21Ne in terrestial quartz: the neon inventory of Sierra Nevada quartz separates, Earth Planet. Sci. Lett. 125, 341–355.

    Article  Google Scholar 

  50. Nikonov, A.A. and Shebalina, T.Y. (1979) Lichenometry and earthquake age determination in central Asia, Nature 280, 675–677.

    Article  Google Scholar 

  51. Obermeier, S.F. (1996) Using liquefaction-induced features for paleoseismic analysis in McCalpin, J. P. (ed.), Paleoseismology, Academic Press, 331–396.

    Google Scholar 

  52. Obermeier, S.F., Jacobson, R.B., Smoot, J.P., Weems, R.E., Gohn, G.S., Monroe, J.E. and Powars, D.S. (1990) Earthquake-induced liquefaction features in the coastal setting of South Carolina and fluvial setting of the New Madrid seismic zone, U.S. Geol. Surv. Prof. Pap. 1504, 1–44.

    Google Scholar 

  53. Rapela, C.W. (1976) El basamento metamórfico de la region de Cafayate, Provincia de Salta. Aspectos petrológicos y geoquímicos, Rev. de la Asoc. Geol. Arg. 21, 203–222.

    Google Scholar 

  54. Reneau, S.L. and Dethier, D.P. (1996) Late Pleistocene landslide-dammed lakes along the Rio Grande, White Rock Canyon, New Mexico, Geol. Soc. of Am. Bull. 108, 1492–1507.

    Article  Google Scholar 

  55. Salfity, J.A. and Marquillas, R.A. (1994) Tectonic and Sedimentary Evolution of the Cretaceous- Eocene Salta Group Basin, Argentina in Salfity, J.A. (ed.), Cretaceous tectonics of the Andes, Friedrich Vieweg und Sohn, 266–315.

    Google Scholar 

  56. Scarascia-Mugnozza, G., Bianchi-Fasani, G., Esposito, C., Martino, S., Saroli, M., Di Luzio, E., and Evans, S.G. (2003). Rock avalanche and mountain slope deformation in a convex dip slope - the case of the Maiella Massif, Central Italy. This volume.

    Google Scholar 

  57. Schäbitz, F., (1999) Vegetation and climate history on the eastern flank of the Sierra de Santa Victoria, Jujuy Province, NW-Argentina (first results), Zbl. Geol. Paläont. Teil I, 7/8, 969–984.

    Google Scholar 

  58. Scheidegger, A.E. (1998) Tectonic predesign of mass movements, with examples from the Chinese Himalaya, Geomorph. 26, 37–46.

    Article  Google Scholar 

  59. Schuster, R.L., Logan, R.L. and Pringle, P.T. (1992) Prehistoric rock avalanches in the Olympic Mountains, Washington, Science 258, 1620–1621.

    Article  Google Scholar 

  60. Scott, B. and Price, S. (1988) Earthquake-induced structures in young sediments. Tectonophys. 147, 165–170.

    Article  Google Scholar 

  61. Seilacher, A. (1984) Sedimentary structures attributed to seismic events, Marine Geol. 55, 1–12.

    Article  Google Scholar 

  62. Siame, L.L., Bourlès, D.L., Sébier, M., Bellier, O., Castano, J.C., Araujo, M., Perez, M., Raisbeck, G.M. and Françoise, Y. (1997) Cosmogenic dating ranging from 20 to 700 ka of a series of alluvial fan surfaces affected by the El Tigre fault, Argentina, Geology 25, 975–978.

    Article  Google Scholar 

  63. Sobel, E.R. and Strecker, M.R. (2002) Contrasting histories from vertical profiles in the Calchaquies and Aconquija ranges, northwest Argentina. Geotemas 4, 139–142.

    Google Scholar 

  64. Strecker, M.R. (1987) Late Cenozoic landscape development, the Santa Maria valley, northwestern Argentina [PhD thesis], Faculty of the Graduate School, Cornell University, pp. 262.

    Google Scholar 

  65. Strecker, M.R. and Marrett, R.A. (1999) Kinematic evolution of fault ramps and role in development of landslides and lakes in northwestern Argentine Andes, Geology 27, 307–310.

    Article  Google Scholar 

  66. Strecker, M.R., Cerveny, P., Bloom, A.L. and Malizzia, D. (1989) Late cenozoic tectonism and landscape development in the foreland of the Andes: Northern Sierras Pampeanas (26°-28°S), Argentina, Tectonics 8, 517–534.

    Article  Google Scholar 

  67. Strom, A.L. and Nikonov, A.A. (1997) Relations between the seismogenic fault parameters and earthquake magnitude. Phys. of the Solid Earth 33, 1011–1022.

    Google Scholar 

  68. Stuiver, M., Reimer, P.J. and Braziunas, T.F. (1998) High-precision radiocarbon age calibration of terrestrial and marine samples, Radiocarbon 40, 1127–1151.

    Google Scholar 

  69. Sylvestre, F., Servant, M., Servant-Vildary, S., Causse, C., Fournier, M., and Ybert, J.P. (1999) Lakelevel chronology on the southern Bolivian Altiplano (18° - 23° S) during Late-Glacial time and Early Holocene, Quat. Res. 51, 54–66.

    Article  Google Scholar 

  70. Trauth, M.H., Bookhagen, B., Müller, A.B. and Strecker, M.R. (2003) Late Pleistocene climate change and erosion in the Santa Maria basin, NW Argentina, J. Sed. Res. 73, 82–90.

    Google Scholar 

  71. Trauth, M.H., Alonso, R.A., Haselton, K.R., Hermanns, R.L. and Strecker, M.R. (2000) Climate change and mass movements in the Argentine Andes, Earth Planet. Sci. Lett. 179, 243–256.

    Article  Google Scholar 

  72. Trauth, M.H. and Strecker, M.R. (1999) Formation of landslide-dammed lakes during a wet period between 40,000 and 25,000 yr BP in NW Argentina, Palaeogeo. Palaeocl. Palaeoecol. 153, 277–287.

    Article  Google Scholar 

  73. Turner, J.C.M. (1973) Descripción geológica de la hoja 11d, Laguna Blanca, Provincia de Catamarca, Dirección Nacional de Geología y Minería Boletin, pp. 71.

    Google Scholar 

  74. van der Hammen, T. and Absy, M.L. (1994) Amazonia during the last glacial, Palaeogeo. Palaeocl. Palaeoecol. 109, 247–261.

    Article  Google Scholar 

  75. Weidinger, J.T., Schramm, J.-M. and Surenian, R. (1996) On prepatory causal factors, initiating the prehistoric Tsergo Ri landslide (Langthang Himal, Nepal), Tectonophys. 260, 95–107.

    Article  Google Scholar 

  76. Wirrmann, D., and Mourguiart, P. (1995) Late Quaternary spatiotemporal limnological variations in the Altiplano of Bolivia and Peru, Quat. Res. 43, 344–354.

    Article  Google Scholar 

  77. Wells, D.L. and Coppersmith, K.L. (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seis. Soc. of Am. 84, 974–1002.

    Google Scholar 

  78. Zipprich, M., Reizner, B., Zech, W. Stingl, H., and Veit, H., (1999) Upper Quaternary landscape and climate evolution in the Sierra Santa Victoria (nort-western Argentina) deduced from geomorphologic and pedologic evidence, Zbl. Geol. Paläont Teil I, 7/8, 180–181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

HERMANNS, R., NIEDERMANN, S., GARCIA, A.V., SCHELLENBERGER, A. (2006). OF COMPLEX INTERACTIONS OF LITHOLOGIC, STRUCTURAL AND TOPOGRAPHIC BOUNDARY CONDITIONS, CLIMATE CHANGE AND ACTIVE TECTONICS ROCK AVALANCHING IN THE NW ARGENTINE ANDES AS A RESULT. In: Evans, S.G., Mugnozza, G.S., Strom, A., Hermanns, R.L. (eds) Landslides from Massive Rock Slope Failure. NATO Science Series, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4037-5_27

Download citation

Publish with us

Policies and ethics