Advertisement

Pathways out of Classical Physics

  • Jürgen Renn
  • Tilman Sauer
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 250)

The relativity revolution was far from complete when Einstein published his pathbreaking paper on the electrodynamics of moving bodies in 1905. It started with his reinterpretation of Lorentz’s theory of electromagnetism in what may be called a “Copernicus process” in analogy to the transition from the Ptolemaic to the Copernican world system or to the transition from preclassical to classical mechanics.1 In such a transition the formalism of an old theory is largely preserved while its semantics change.2 Einstein’s special theory of relativity of 1905 had altered the semantics of such fundamental concepts like space and time, velocity, force, energy, and momentum, but it had not touched Newton’s law of gravitation. Since, however, according to special relativity, physical interactions cannot propagate faster than light, Newton’s well-established theory of gravitation, based on instantaneous action at a distance, was no longer acceptable after 1905. The relativity revolution was completed only when this conflict was resolved ten years later in November 1915 with Einstein’s formulation of the general theory of relativity.

Keywords

Classical Physic Correspondence Principle Conservation Principle Newtonian Limit Lorentz Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, Max. 1914. “Die neue Mechanik.” Scientia 15: 8–27.Google Scholar
  2. Bianchi, L. 1910. Vorlesungen über Differentialgeometrie. Translated by Max Lukat. Leipzig: B.G.Teubner.Google Scholar
  3. Buchwald, Jed. 1985. From Maxwell to Microphysics. Aspects of Electromagnetic Theory in the Last Quarter of the Nineteenth Century. Chicago: University of Chicago Press.Google Scholar
  4. Capria, Marco Mamone. 2005. “General Relativity: Gravitation as Geometry and the Machian Programme.” In M.M. Capria (ed.), Physics Before and After Einstein. Amsterdam: IOS, 93–128.Google Scholar
  5. Cartan, Elie. 1923. “Sur les variétés à connection affine et la théorie de la relativité généralisée (première partie).” Ecole Normale Supérieure (Paris). Annales 40: 325–412.Google Scholar
  6. ——. 1924. “Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie, suite)”. Ecole Normale Supérieure (Paris). Annales 41: 1–25.Google Scholar
  7. Castagnetti, Giuseppe, Peter Damerow, Werner Heinrich, Jürgen Renn and Tilman Sauer. 1994. Wissenschaft zwischen Grundlagenkrise und Politik: Einstein in Berlin. Arbeitsbericht der Arbeitsstelle Albert Einstein 1991–1993. Max-Planck-Institut für Bildungsforschung.Google Scholar
  8. Cattani, Carlo and Michelangelo De Maria. 1989a. “Max Abraham and the Reception of Relativity in Italy: His 1912 and 1914 Controversies with Einstein.” In (Howard and Stachel 1989, 160–174).Google Scholar
  9. ——. 1989b. “The 1915 Epistolary Controversy between Einstein and Tullio Levi-Civita.” In (Howard and Stachel 1989, 175–200).Google Scholar
  10. Corry, Leo. 2004. David Hilbert and the Axiomatization of Physics, 1898–1918: From “Grundlagen der Geometrie” to “Grundlagen der Physik.” Dordrecht: Kluwer.Google Scholar
  11. Corry, Leo, Jürgen Renn and John Stachel. 1997. “Belated Decision in the Hilbert-Einstein Priority Dispute.” Science 278: 1270–1273.CrossRefGoogle Scholar
  12. CPAE 2. 1989. John Stachel, David C. Cassidy, Jürgen Renn and Robert Schulmann (eds.), The Collected Papers of Albert Einstein. Vol. 2. The Swiss Years: Writings, 1900–1909. Princeton: Princeton University Press.Google Scholar
  13. CPAE 3. 1993. Martin J. Klein, A. J. Kox, Jürgen Renn, and Robert Schulmann (eds.), The Collected Papers of Albert Einstein. Vol. 3. The Swiss Years: Writings, 1909–1911. Princeton: Princeton University Press.Google Scholar
  14. CPAE 4. 1995. Martin J. Klein, A. J. Kox, Jürgen Renn, and Robert Schulmann (eds.), The Collected Papers of Albert Einstein. Vol. 4. The Swiss Years: Writings, 1912–1914. Princeton: Princeton University Press.Google Scholar
  15. CPAE 5. 1993. Martin J. Klein, A. J. Kox, and Robert Schulmann (eds.), The Collected Papers of Albert Einstein. Vol. 5. The Swiss Years: Correspondence, 1902–1914. Princeton: Princeton University Press.Google Scholar
  16. CPAE 6. 1996. A. J. Kox, Martin J. Klein, and Robert Schulmann (eds.), The Collected Papers of Albert Einstein. Vol. 6. The Berlin Years: Writings, 1914–1917. Princeton: Princeton University Press.Google Scholar
  17. CPAE 8. 1998. Robert Schulmann, A. J. Kox, Michel Janssen, and József Illy (eds.), The Collected Papers of Albert Einstein. Vol. 8. The Berlin Years: Correspondence, 1914–1918. Princeton: Princeton University Press. [Part A: 1914–1917, pp. 1–590. Part B: 1918, pp. 591–1118.]Google Scholar
  18. CPAE 9. 2004. Diana Kormos Buchwald, Robert Schulmann, József Illy, Daniel Kennefick, and Tilman Sauer (eds.), The Collected Papers of Albert Einstein. Vol. 9. The Berlin Years: Correspondence, January 1919–April 1920. Princeton: Princeton University Press.Google Scholar
  19. Damerow, Peter. 1996. Abstraction and Representation: Essays on the Cultural Revolution of Thinking. Dordrecht: Kluwer.Google Scholar
  20. Damerow, Peter, Gideon. Freudenthal, Peter McLaughlin and Jürgen Renn. 2004. Exploring the Limits of Preclassical Mechanics, 2nd edition. New York: Springer.Google Scholar
  21. Darrigol, Oliver. 2000. Electrodynamics from Ampère to Einstein. Oxford: Oxford University Press.Google Scholar
  22. Davis, R. 1984. Learning Mathematics: The Cognitive Approach to Mathematics Education. New Jersey: Ablex Publishing Corporation.Google Scholar
  23. Dongen, Jeroen van. 2002. Einstein's Unification: General Relativity and the Quest for Mathematical Naturalness. Dissertation, University of Amsterdam.Google Scholar
  24. ——. 2004. “Einstein's methodology, semivectors and the unification of electrons and protons.” Archive for History of Exact Sciences 58 (2004) 219–254.CrossRefGoogle Scholar
  25. Earman, John and Clark Glymour. 1978. “Lost in the Tensors: Einstein's Struggles with Covariance Principles 1912–1916.” Studies in History and Philosophy of Science 9(4):251–278.CrossRefGoogle Scholar
  26. Earman, John and Michel Janssen. 1993. “Einstein's Explanation of the Motion of Mercury's Perihelion.” In (Earman et al. 1993, 129–172).Google Scholar
  27. Earman, John, Michel Janssen and John Norton (eds.). 1993. The Attraction of Gravitation. New Studies in the History of General Relativity. (Einstein Studies, Vol. 5), Boston/Basel/Berlin: Birkhäuser.Google Scholar
  28. Earman, John and John Norton. 1987. “What Price Space-Time Substantivalism? The Hole Argument.” British Journal for the Philosophy of Science 38: 515–525.CrossRefGoogle Scholar
  29. Ehlers, Jürgen 1981. “Über den Newtonschen Grenzwert der Einsteinschen Gravitationstheorie.” In J. Nitsch et al. (eds.), Grundprobleme der modernen Physik. Mannheim: Bibliographisches Institut, 65–84.Google Scholar
  30. —— 1986. “On Limit Relations Between, and Approximative Explanations of, Physical Theories.” In R. Marcus et al. (eds.), Logic, Methodology, and Philosophy of Science VII. New York: Elsevier Science Publishers, 387–403.Google Scholar
  31. Einstein, Albert. 1907. “Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen.” Jahrbuch der Radioaktivität und Elektronik 4: 411–462 (CPAE 2, Doc. 47).Google Scholar
  32. —— 1911. “Über den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes.” Annalen der Physik 35: 898–908 (CPAE 3, Doc. 23).CrossRefGoogle Scholar
  33. —— 1912a. “Gibt es eine Gravitationswirkung, die der elektrodynamischen Induktionswirkung analog Ist?” Vierteljahrsschrift für gerichtliche Medizin und öffentliches Sanitätswesen 44: 37–40 (CPAE 4, Doc. 7).Google Scholar
  34. —— 1912b. “Lichtgeschwindigkeit und Statik des Gravitationsfeldes.” Annalen der Physik 38: 355–369 (CPAE 4, Doc. 3).CrossRefGoogle Scholar
  35. —— 1912c. “Zur Theorie des statischen Gravitationsfeldes.” Annalen der Physik 38, 443–458 (CPAE 4, Doc. 4).CrossRefGoogle Scholar
  36. —— 1913. “Zum gegenwärtigen Stande des Gravitationsproblems.” Physikalische Zeitschrift 14:1249–1266 (CPAE 4, Doc. 17). (English translation in vol. 3 of this series.)Google Scholar
  37. —— 1914a. “Die formale Grundlage der allgemeinen Relativitätstheorie.” Sitzungsberichte der Preus-sischen Akademie der Wissenschaften. 2. Halbband, XLI: 1030–1085 (CPAE 6, Doc. 9).Google Scholar
  38. —— 1914b. “Prinzipielles zur verallgemeinerten Relativitätstheorie und Gravitationstheorie.” Physika-lische Zeitschrift 15: 176–180 (CPAE 4, Doc. 25).Google Scholar
  39. —— 1914c. “Zum Relativitäts-Problem.” Scientia 15: 337–348 (CPAE 4, Doc. 31).Google Scholar
  40. —— 1915a. “Die Feldgleichungen der Gravitation.” Sitzungsberichte der Preussischen Akademie der Wissenschaften. 2. Halbband, XLVIII–XLIX: 844–847 (CPAE 6, Doc. 25).Google Scholar
  41. —— 1915b. “Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie.” Sitzungsberichte der Preussischen Akademie der Wissenschaften. 2. Halbband, XLVII: 831–839 (CPAE 6, Doc. 24).Google Scholar
  42. —— 1915c. “Zur allgemeinen Relativitätstheorie.” Sitzungsberichte der Preussischen Akademie der Wissenschaften. 2. Halbband, XLIV: 778–786 (CPAE 6, Doc. 21).Google Scholar
  43. —— 1915d. “Zur allgemeinen Relativitätstheorie (Nachtrag)”. Sitzungsberichte der Preussischen Akademie der Wissenschaften. 2. Halbband, XLVI: 799–801 (CPAE 6, Doc. 22).Google Scholar
  44. —— 1915e. “Zusammenfassung der Mitteilung ‘Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie.’” Königlich Preuβische Akademie der Wissenschaften (Berlin). Sitzungsberichte (XLVII):803, (CPAE 6, Doc. 24).Google Scholar
  45. —— 1916a. “Die Grundlage der allgemeinen Relativitätstheorie.” Annalen der Physik 49, 7: 769–822 (CPAE 6, Doc. 30).CrossRefGoogle Scholar
  46. —— 1916b. “Eine neue formal Deutung der Maxwellschen Feldgleichungen der Elektrodynamik.” Königlich Preuβische Akademie der Wissenschaften (Berlin). Sitzungsberichte, 184–188 (CPAE 6, Doc. 27).Google Scholar
  47. —— 1916c. “Näherungsweise Integration der Feldgleichungen der Gravitation.” Königlich Preuβische Akademie der Wissenschaften (Berlin). Sitzungsberichte: 668–696, (CPAE 6, Doc. 32).Google Scholar
  48. —— 1933. About the Origins of General Theory of Relativity. [George A. Gibson Foundation Lecture, delivered at Glasgow, 20 June 1933.] University of Glasgow: MS general 1314, (a typescript amended in Einstein's handwriting).Google Scholar
  49. Einstein, Albert and A. D. Fokker. 1914. “Die Nordströmsche Gravitationstheorie vom Standpunkt des absoluten Differentialkalküls.” Annalen der Physik 44: 321–328 (CPAE 4, Doc. 28).CrossRefGoogle Scholar
  50. Einstein, Albert and Marcel Grossmann. 1913. Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation. Leipzig: Teubner (CPAE 4, Doc. 13).Google Scholar
  51. —— 1914. “Kovarianzeigenschaften der Feldgleichungen der auf die verallgemeinerte Relativitätstheorie gegründeten Gravitationstheorie.” Zeitschrift für Mathematik und Physik 63: 215–225 (CPAE 6, Doc. 2).Google Scholar
  52. Einstein, A. and L. Infeld. 1938. The Evolution of Physics: The Growth of Ideas from Early Concepts to Relativity and Quanta. New York: Simon & Schuster.Google Scholar
  53. Eisenstaedt, Jean and A.J.Kox (eds.). 1992. Studies in the History of General Relativity. (Einstein Studies, Vol. 3). Boston/Basel/Berlin: Birkhäuser.Google Scholar
  54. Galison, Peter. 2003. Einstein's Clocks and Poincaré's Maps: Empires of Time. New York: Norton.Google Scholar
  55. Gentner, Dedre. and A. L. Stevens. 1983. Mental Models. Hillsdale, NJ: Erlbaum.Google Scholar
  56. Gray, Jeremy (ed.). 1999. The Symbolic Universe: Geometry and Physics, 1890–1930. Oxford: Oxford University Press.Google Scholar
  57. Goenner, Hubert, Jürgen Renn, Jim Ritter, and Tilman Sauer (eds.). 1999. The Expanding Worlds of General Relativity (Einstein Studies, Vol. 7). Boston: Birkhäuser.Google Scholar
  58. Havas, Peter. 1989. “The Early History of the “Problem of Motion” in General Relativity.” In (Howard and Stachel 1989, 234–276).Google Scholar
  59. Hilbert, David. 1915. “Die Grundlagen der Physik. (Erste Mitteilung).” Nachrichten der Königlichen Gesellschaft zu Göttingen, 395–407.Google Scholar
  60. Hoffmann, Banesh. 1972. “Einstein and Tensors.” Tensor 26: 439–162.Google Scholar
  61. Holmes, Frederick L., Jürgen Renn and Hans-Jörg Rheinberger (eds.). 2003. Reworking the Bench: Research Notebooks in the History of Science. Dordrecht: Kluwer.Google Scholar
  62. Howard, Don and John D. Norton. 1993. “Out of the Labyrinth? Einstein, Hertz, and the Göttingen Answer to the Hole Argument.” In (Earman et al. 1993, 30–62).Google Scholar
  63. Howard, Don, and John Stachel (eds.). 1989. Einstein and the History of General Relativity (Einstein Studies, Vol. 1). Boston: Birkhäuser.Google Scholar
  64. —— 1989–2005. Einstein Studies, 11 vols. Boston/Basel/Berlin: Birkhäuser.Google Scholar
  65. Janssen, Michel. 1995. A Comparison between Lorentz's Ether Theory and Special Relativity in the Light of the Experiments of Trouton and Noble. Dissertation, University of Pittsburgh.Google Scholar
  66. —— 1999. “Rotation as the Nemesis of Einstein's Entwurf Theory.” In (Goenner et al. 1999, 127–157).Google Scholar
  67. —— 2005. “Of Pots and Holes: Einstein's Bumpy Road to General Relativity.” Annalen der Physik 14: Supplement 58–85. Reprinted in J. Renn (ed.) Einstein's Annalen Papers. The Complete Collection 1901–1922. Weinheim: Wiley-VCH, 2005.CrossRefGoogle Scholar
  68. Janssen, Michel and John Stachel 2004. The Optics and Electrodynamics of Moving Bodies. Preprint 265: Max Planck Institute for the History of Science.Google Scholar
  69. Katzir, Shaul. 2005. “Poincaré's Relativistic Theory of Gravitation.” In (Kox and Eisenstaedt 2005, 15–38).Google Scholar
  70. Kennefick, Daniel. 2005. “Einstein and the Problem of Motion: A Small Clue.” In (Kox and Eisenstaedt 2005, 109–124).Google Scholar
  71. Kox, A.J. and Eisenstaedt, Jean (eds.). 2005. The Universe of General Relativity. (Einstein Studies, Vol. 11) Boston/Basel/Berlin: Birkhäuser.Google Scholar
  72. Künzle, H.P. 1976. “Covariant Newtonian Limit of Lorentz space-times.” General Relativity and Gravitation 7(5): 445–457.Google Scholar
  73. Lanczos, C. 1972. “Einstein's Path From Special to General Relativity.” In L. O'Raifertaigh (ed.), General Relativity: Papers in Honour of J. L. Synge. Oxford: Clarendon Press, 5–19.Google Scholar
  74. Laue, Max von. 1911. Das Relativitätsprinzip. Braunschweig: Friedr. Vieweg & Sohn.Google Scholar
  75. Lorentz, Hendrik A. 1915. “Het beginsel van Hamilton in Einstein's theorie der zwaartekracht.” Koninklijke Akademie van Wetenschappen te Amsterdam. Wis- en Natuurkundige Afdeeling. Verslagen van de Gewone Vergaderingen 23: 1073–1089. Reprinted in translation as “On Hamilton's Principle in Einstein's Theory of Gravitation.” Koninlijke Akademie van Wetenschappen te Amsterdam. Section of Sciences. Proceedings 19 (1916–1917): 1341–1354.Google Scholar
  76. —— 1895. Versuch einer Theorie der electrischen [elektrischen] und optischen Erscheinungen in bewegten Körpern. Leiden: Brill.Google Scholar
  77. Maltese, Giulio. 1991. “The Rejection of the Ricci Tensor in Einstein's First Tensorial Theory of Gravitation.” Archive for History of Exact Sciences 41(4): 363–381.Google Scholar
  78. Maltese, Giulio, and Lucia Orlando. 1995. “The Definition of Rigidity in the Special Theory of Relativity and the Genesis of the General Theory of Relativity.” Studies in History and Philosophy of Modern Physics 26(3): 263–306.CrossRefGoogle Scholar
  79. Mehra, Jagdesh. Einstein, Hilbert, and the Theory of Gravitation. Historical Origins of General Relativity Theory. Dordrecht: Reidel.Google Scholar
  80. Miller, Arthur I. 1992. “Albert Einstein's 1907 Jahrbuch Paper: The First Step from SRT to GRT.” In (Eisenstaedt and Kox 1992, 319–335).Google Scholar
  81. Minkowski, Hermann. 1908. “Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern.” Königliche Gesellschaft der Wissenschaften Zu Göttingen, Nachrichten. Mathematisch-phy-sikalische Klasse, 53–111.Google Scholar
  82. Minsky, Marvin. 1975. “A Framework for Representing Knowledge.” In P. H. Winston (ed.), The Psychology of Computer Vision. New York: McGraw-Hill, 211–281.Google Scholar
  83. —— 1987. The Society of Mind. London: Heinemann.Google Scholar
  84. Norton, John D. 1984. “How Einstein Found his Field Equations, 1912–1915.” Historical Studies in the Physical Sciences 14: 253–316. Reprinted in (Howard and Stachel 1989, 101–159). Page references are to this reprint.Google Scholar
  85. —— 1985. “What Was Einstein's Principle of Equivalence?” Studies in History and Philosophy of Science 16. Reprinted in (Howard and Stachel 1989, 5–47.)Google Scholar
  86. —— 1992a. “Einstein, Nordström and the Early Demise of Scalar, Lorentz Covariant Theories of Gravitation.” Archive for the History of Exact Sciences (45) 1: 17–94.CrossRefGoogle Scholar
  87. —— 1992b. “The Physical Content of General Covariance.” In (Eisenstaedt and Kox 1992, 281–315).Google Scholar
  88. —— 1994. “General Covariance and the Foundations of General Relativity: Eight Decades of Dispute.” Reports on Progress in Physics 56: 791–858.CrossRefGoogle Scholar
  89. —— 1999. “Geometries in Collision: Einstein, Klein, and Riemann.” In (Gray 1999, 128–144).Google Scholar
  90. —— 2000. “‘Nature is the Realisation of the Simplest Conceivable Mathematical Ideas’: Einstein and the Canon of Mathematical Simplicity.” Studies in History and Philosophy of Modern Physics 31: 135–170.CrossRefGoogle Scholar
  91. O'Neill, Barrett. 1983. Semi-Riemannian Geometry with Applications to Relativity. New York: Academic Press.Google Scholar
  92. Pais, A. 1982. ‘Subtle is the Lord …’ The Science and the Life of Albert Einstein. Oxford: Oxford University Press.Google Scholar
  93. Planck, Max. 1906. “Das Prinzip der Relativität und die Grundgleichungen der Mechanik.” Deutsche Physikalische Gesellschaft. Verhandlungen 8: 136–141.Google Scholar
  94. —— 1907. “Zur Dynamik bewegter Systeme.” Annalen der Physik 26: 1–34.Google Scholar
  95. Reich, Karin. 1994. Die Entwicklung des Tensorkalküls. Vom absoluten Differentialkalkül zur Relativitätstheorie. Basel: Birkhäuser.Google Scholar
  96. Renn, Jürgen. 1993. “Einstein as a Disciple of Galileo: A Comparative Study of Conceptual Development in Physics.” Science in Context (special issue) 6: 311–341.Google Scholar
  97. —— 1997. “Einstein's Controversy with Drude and the Origin of Statistical Mechanics in his Atomism: A New Glimpse from the ‘Love Letters’.” Archive for History of Exact Sciences 4: 315–354.Google Scholar
  98. —— 2000. “Mentale Modelle in der Geschichte des Wissens: Auf dem Wege zu einer Paläontologie des mechanischen Denkens.” In E. Henning (ed.), Dahlemer Archivgespräche. Berlin: Archiv zur Geschichte der Max-Planck-Gesellschaft, 83–100.Google Scholar
  99. —— 2004. “Die klassische Physik vom Kopf auf die Füβe gestellt: Wie Einstein die Spezielle Relativitätstheorie fand.” Physik Journal 3: 49–55.Google Scholar
  100. —— (ed.). 2005a. Documents of a Life's Pathway. Weinheim: Wiley-VCH.Google Scholar
  101. —— 2005b. “Before the Riemann Tensor: The Emergence of Einstein's Double Strategy.” In (Kox and Eisenstaedt 2005, 53–66).Google Scholar
  102. —— 2005c. “Standing on the Shoulders of a Dwarf: General Relativity—a Triumph of Einstein and Grossmann's Erroneous Entwurf Theory.” In (Kox and Eisenstaedt 2005, 39–52).Google Scholar
  103. Renn, Jürgen, Giuseppe Castagnetti and Peter Damerow. 1999. “Albert Einstein: alte und neue Kontexte in Berlin.” In J. Kocka (ed.), Die Königlich Preuβische Akademie der Wissenschaften zu Berlin im Kaiserreich. Berlin: Akademie Verlag, 333–354.Google Scholar
  104. Renn, Jürgen, Peter Damerow and S. Rieger. 2001. “Hunting the White Elephant: When and How did Galileo Discover the Law of Fall? (with an Appendix by Domenico Giulini).” In J. Renn (ed.), Galileo in Context. Cambridge: Cambridge University Press, 29–149.Google Scholar
  105. Renn, Jürgen and Tilman Sauer. 1996. “Einstein's Züricher Notizbuch. Die Entdeckung der Feldgleichungen der Gravitation im Jahre 1912.” Physikalische Blätter 53 (1996) 856–872.Google Scholar
  106. —— 1999. “Heuristics and Mathematical Representation in Einstein's Search for a Gravitational Field Equation.” In (Goenner et al. 1999, 87–125).Google Scholar
  107. —— 2003a. “Errors and Insights: Reconstructing the Genesis of General Relativity from Einstein's Zurich Notebook.” In (Holmes et al. 2003, 253–268).Google Scholar
  108. —— 2003b. “Eclipses of the Stars — Mandl, Einstein, and the Early History of Gravitational Lensing.”In A. Ashtekar et al. (eds.), Revisting the Foundations of Relativistic Physics — Festschrift in Honour of John Stachel. Dordrecht: Kluwer Academic Publishers.Google Scholar
  109. Renn, Jürgen, Tilman Sauer and John Stachel. 1997. “The Origin of Gravitational Lensing. A Postscript to Einstein's 1936 Science Paper.” Science (275) 5297: 184–186.Google Scholar
  110. Ricci, G. and T. Levi-Civita. 1901. “Méthodes de calcul différentiel absolu et leurs applications.” Mathematische Annalen 54: 125–201.CrossRefGoogle Scholar
  111. Salmon, Merrilee H. et al. 1999. Introduction to the Philosophy of Science: A Text by Members of the Department of the History and Philosophy of Science of the University of Pittsburgh. Indianapolis:Hackett.Google Scholar
  112. Sauer, Tilman. 1999. “The Relativity of Discovery: Hilbert's First Note on the Foundations of Physics.”Archive for History of Exact Sciences (53) 529–575.Google Scholar
  113. —— 2002. “Hopes and Disappointments in Hilbert's Axiomatic 'Foundations of Physics.” In M. Heidelberger and F. Stadler (eds.), History of Philosophy and Science: new trends and perspectives.Dordrecht: Kluwer, 225–237.Google Scholar
  114. —— 2005a. “Albert Einstein, Review Paper on General Relativity Theory.” In I. Grattan-Guiness (ed.),Landmark Writings in Western Mathematics 1640–1940. Amsterdam: Elsevier, 802–822.CrossRefGoogle Scholar
  115. —— 2005b. “Einstein Equations and Hilbert Action. What is Missing on Page 8 of the Proofs for Hilbert's First Communication on the Foundations of Physics?” Archive for History of Exact Sciences 59 (2005) 577–590.CrossRefGoogle Scholar
  116. —— 2006. “Field Equations in Teleparallel Spacetime. Einstein's Fernparallelismus Approach Toward Unified Field Theory.” Historia Mathematica, in press.Google Scholar
  117. Scheibe, Erhard. 1997. Die Reduktion physikalischer Theorien. Ein Beitrag zur Einheit der Physik. Teil I:Grundlagen und elementare Theorie. Berlin: Springer.Google Scholar
  118. —— 1999. Die Reduktion physikalischer Theorien. Ein Beitrag zur Einheit der Physik. Teil II: Inkommensurabilität und Grenzfalreduktion. Berlin: Springer.Google Scholar
  119. Sommerfeld, A. 1910a. “Zur Relativitätstheorie. I. Vierdimensionale Vektoralgebra.” Annalen der Physik 32(9): 749–776.CrossRefGoogle Scholar
  120. —— 1910b. “Zur Relativitätstheorie. II. Vierdimensionale Vektoranalysis.” Annalen der Physik 33(14):649–689.CrossRefGoogle Scholar
  121. Stachel, J. 1980. “Einstein and the Rigidly Rotating Disk.” In A. Held (ed.), General Relativity and Gravitation: A Hundred Years after the Birth of Einstein. New York: Plenum, 1–15.Google Scholar
  122. —— 1982a. “The Genesis of General Relativity.” In H. Nelkowski, H. Poser, R. Schrader and R. Seiler (eds.), Einstein Symposion Berlin aus Anlass der 100. Wiederkehr seines Geburtstages. Berlin: Springer, 428–442.Google Scholar
  123. —— 1987b. “How Einstein Discovered General Relativity.” In M. A. H. MacCallum (ed.), General Relativity and Gravitation: Proceedings of the 11th International Conference on General Relativity and Gravitation. Cambridge: Cambridge University Press, 200–208.Google Scholar
  124. —— 1989a. “The Rigidly Rotating Disk as the 'Missing Link” in the History of General Relativity.” In (Howard and Stachel 1989, 48–62).Google Scholar
  125. —— 1989b. “Einstein's Search for General Covariance, 1912–1915.” In (Howard and Stachel, 63–100).Google Scholar
  126. —— 1994. “Changes in the Concepts of Space and Time Brought About by Relativity.” In C. C. Gould and R. S. Cohen (eds.), Artifacts, Representations, and Social Practice. Dordrecht: Kluwer Academic Publishers, 141–162.Google Scholar
  127. —— 1995. “History of Relativity.” In L. M. Brown, A. Pais and B. Pippard (eds.), Twentieth Century Physics, Vol. 1. Bristol: Institute of Physics Pub., Philadelphia: American Institute of Physics Press,249–356.CrossRefGoogle Scholar
  128. —— 2002. Einstein from ‘B’ to ‘Z’. (Einstein Studies, Vol. 9) Boston/Basel/Berlin: Birkhäuser.Google Scholar
  129. Vizgin, Vladimir P. 2001. “On the discovery of the gravitational field equations by Einstein and Hilbert:new materials.” Physics-Uspekhi 44(12): 1283–1298.CrossRefGoogle Scholar
  130. Vizgin, Vladimir P. and Y. A. SmorodinskiÎ.1979. “From the Equivalence Principle to the Equations of Gravitation.” Soviet Physics-USPEKHI 22 (1979) 489–513.CrossRefGoogle Scholar
  131. Walter 1999. “Minkowski, Mathematicians, and the Mathematical Theory of Relativity.” In (Goenner et al.1999, 45–86).Google Scholar
  132. Whittaker, Edmund. 1951. A History of the Theories of Aether and Electricity. Vol. 1: The Classical Theo ries. London: Nelson.Google Scholar
  133. ——1953. A History of the Theories of Aether and Electricity. Vol. 1: The Modern Theories 1900–1926. London: Nelson (both volumes reprinted by Dover in 1989).Google Scholar
  134. Wright, J. E. 1908. Invariants of Quadratic Differential Forms. Cambridge: Cambridge University Press.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Jürgen Renn
    • Tilman Sauer

      There are no affiliations available

      Personalised recommendations