Iron-Only Nitrogenase: Exceptional Catalytic, Structural and Spectroscopic Features

  • K. Schneider
  • A. Müller
Chapter
Part of the Nitrogen Fixation: Origins, Applications, and Research Progress book series (NITR, volume 1)

Abstract

The classical, molybdenum-containing nitrogenase system exists in all diazotrophic microorganisms that have been examined. It was a long-held dogma that Mo is absolutely necessary for nitrogen fixation, however, in 1980, Bishop and coworkers discovered that Azotobacter vinelandii Nif͞ point mutants, which are defective in Mo-nitrogenase synthesis, were able to fix N2 in the absence of molybdenum (Bishop et al., 1980). In 1986, the first Mo-independent “alternative” nitrogenases were isolated from two Azotobacter species, A. vinelandii (Hales et al., 1986) and A. chroococcum (Robson et al., 1986) and both identified as vanadium-containing nitrogenases (V-nitrogenases). It came as an even a greater surprise when, two years later, a second type of alternative nitrogenase, lacking both Mo and V, was isolated from A. vinelandii as well (Chisnell et al., 1988). This last enzyme system has now also been isolated from phototrophic bacteria, e.g., Rhodobacter capsulatus (from a ni/HDK͞ strain) (Schneider et al., 1991) and Rhodospirillum rubrum (from a nifH͞ strain) (Davis et al., 1996). Based on multielement analyses by ICP-MS, the Mo/V-independent nitrogenase from R. capsulatus has been unambiguously identified as an enzyme system that contains only iron but no heterometal atoms (Müller et al., 1993; Schneider et al., 1997); a fact that has led to their designation as either ‘Fe nitrogenase’ or ‘Fe-only nitrogenase’.

Keywords

Rhodospirillum Rubrum Rhodobacter Capsulatus MoFe Protein Azotobacter Chroococcum Methanosarcina Barkeri 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arber, J. M., Flood, A. C, Garner, C. D., Gormal, C. A., Hasnain, S. S., and Smith, B. E. (1988). Iron K-edge X-ray absorption spectroscopy of the iron-molybdenum cofactor of nitrogenase from Klebsiella pneumoniae. Biochem. J., 252, 421–425.Google Scholar
  2. Bishop, P. E., Jarlenski, D. M. L., and Hetherrington, D. R. (1980) Proc. Natl Acad. Sci. U.S.A., 77, 7342–7346.CrossRefGoogle Scholar
  3. Blanchard, C, and Hales, B. J. (1996). Isolation of two forms of the nitrogenase VFe protein from Azotobacter vinelandii. Biochemistry, 55,472–478.CrossRefGoogle Scholar
  4. Bolin, J. T., Campobasso, N., Muchmore, S. W., Morgan, T. V., and Mortenson, L. E. (1993) Structure and environment of metal clusters in the nitrogenase molybdenum–iron protein from Clostridium pasteurianum. In E. I. Stiefel, D. Coucouvanis, and W. E. Newton (Eds.), Molybdenum enzymes, cofactors, and model systems(pp. 186–195). Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  5. Chien, Y.-T., Auerbuch, V., Brabban, A. D., and Zinder, S. H. (2000). Analysis of genes encoding an alternative nitrogenase in the archeon Methanosarcina barkeri 227. J. Bacterioi, 182, 3247–3253.CrossRefGoogle Scholar
  6. Chisnell, J.R., Premakumar, R. and Bishop, P.E. (1988). Purification of a second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. J. Bacterioi, 170, 27–33.Google Scholar
  7. Davis, R., Lehmann, L., Petrovich, R., Shah, V. K., Roberts, G. P., and Ludden, P. W. (1996). Purification and characterization of the alternative nitrogenase from the photosynthetic bacterium Rhodospirillum rubrum. J. Bacterioi, 178, 1445–1450.Google Scholar
  8. Dilworth, M. J., Eady, R. R., and Eldridge, M. E. (1988). The vanadium nitrogenase of Azotobacter chroococcum. Reduction of acetylene and ethylene to ethane. Biochem. J., 249, 745–751.Google Scholar
  9. Dilworth, M. J., Eldridge, M. E., and Eady, R. R. (1993). The molybdenum and vanadium nitrogenases of Azotobacter chroococcum: Effect of elevated temperature on N2 reduction. Biochem. J.,289, 395–400.Google Scholar
  10. Dixon, R., Eady, R. R., Espin, G., Hill, S., Iaccarino, M., and Merrick, M. (1980). Analysis of regulation of Klebsiella pneumoniae nitrogen fixation (nif) gene cluster with gene fusions. Nature, 286, 128–132.CrossRefGoogle Scholar
  11. Eady, R. R. (1996). Structure–function relationships of alternative nitrogenases. Chem. Rev., 96, 3013–3030.CrossRefGoogle Scholar
  12. Eady, R. R., Robson, R. L., Richardson, T. H., Miller, R. W., and Hawkins, M. (1987). The vanadium nitrogenase of Azotobacter chroococcum. Biochem. J., 244, 197–207.Google Scholar
  13. Einsle, O., Tezcan, F. A., Andrade, S. L. A., Schmid, B., Yoshida, M., Howard, J. B., et al.(2002). Nitrogenase MoFe protein at 1.16 A resolution: A central ligand in the FeMo–cofactor. Science, 297, 1696–1700.CrossRefGoogle Scholar
  14. Fallik, E., Hartel, P. G., and Robson, R. L. (1993). Presence of vanadium nitrogenase in Azotobacter paspali. Appi Environ. Microbiol., 59, 1883–1886.Google Scholar
  15. Gollan, U., Schneider, K., Müller, A., Schuddekopf, K., and Klipp, W. (1993). Detection of the in vivo incorporation of a metal cluster into a protein. The FeMo cofactor is inserted into the FeFe protein of the alternative nitrogenase of Rhodobacter capsulatus. Eur. J. Biochem., 215, 25–35.CrossRefGoogle Scholar
  16. Hales, B. J. (1990). Alternative nitrogenases. Adv. Inorg. Biochem., 8, 165–198.Google Scholar
  17. Hales, B. J., Case, E. E., Morningstar, J. E., Dzeda, M. F., and Mauterer, L. A. (1986). Isolation of a new vanadium-containing nitrogenase from Azotobacter vinelandii. Biochemistry, 25, 7251–7255.CrossRefGoogle Scholar
  18. Joerger, R. D., Jacobson, M. R., Premakumar, R., Wolfinger, E. D., and Bishop, P. E. (1989). Nucleotide sequence and mutational analysis of the structural genes (anfHDGK) for the second alternative nitrogenase from Azotobacter vinelandii. J. Bacterioi, 171, 1075–1086.Google Scholar
  19. Joerger, R. D., Loveless, T. M., Pau, R. N., Mitchenall, L.A., Simon, B. H., and Bishop, P. E. (1990). Nucleotide sequence and mutational analysis of the structural genes for nitrogenase 2 of Azotobacter vinelandii. J. Bacterioi,. 172, 3400–3408.Google Scholar
  20. Kennedy, C, and Dean, D. R. (1992). The nifU, nifS and w/Kgene products are required for activity of all three nitrogenases of Azotobacter vinelandii. Moi Gen. Genet., 231, 494–498.CrossRefGoogle Scholar
  21. Kim, J., and Rees, D. C. (1992). Crystallographic structure and functional implications of the nitrogenase molybdenum–iron protein from Azotobacter vinelandii. Nature, 360, 553–560.CrossRefGoogle Scholar
  22. Krahn, E., Schneider, K., and Müller, A. (1996). Comparative characterization of H2 production by the conventional Mo nitrogenase and the alternative “iron–only” nitrogenase of Rhodobacter capsulatus hup mutants. Appl. Microbiol. Biotechnol., 46, 285–290.CrossRefGoogle Scholar
  23. Krahn, E., Weiss, B. J. R., Krockel, M., Groppe, J., Henkel, G, Cramer, S. P., et al.(2002). The Fe-only nitrogenase from Rhodobacter capsulatus: Identification of the cofactor, an unusual, high-nuclearity iron–sulfür cluster, by Fe /C–edge EXAFS and 57Fe Mossbauer spectroscopy. J. Biol. Inorg. Chem., 7, 37–45.Google Scholar
  24. Lanzilotta, W. N., Christiansen, J., Dean, D. R., and Seefeldt, L. C. (1998). Evidence for coupled electron and proton transfer in the [8Fe–7S] cluster of nitrogenase. Biochemistry, 37, 11376–11384.CrossRefGoogle Scholar
  25. Lanzilotta, W. N., and Seefeldt, L. C. (1996). Electron transfer from the nitrogenase iron protein to the [8Fe–(7/8)S] clusters of the molybdenum-iron protein. Biochemistry, 35, 16770–16776.CrossRefGoogle Scholar
  26. Lehmann, L. J., and Roberts, G. P. (1991). Identification of an alternative nitrogenase system in Rhodospirillum rubrum. J. Bacteriol,. 173, 5705–5711.Google Scholar
  27. Loveless, T. M., and Bishop, P. E. (1999). Identification of genes unique to Mo-independent nitrogenase systems in diverse diazotrophs. Can. J. Microbiol, 45, 312–317.CrossRefGoogle Scholar
  28. Lowe, D. J., Fisher, K., and Thornley, R. N. F. (1993). Klebsiella pneumoniae nitrogenase: Pre-steady-state absorbance changes show that redox changes occur in the MoFe protein that depend on substrate and component protein ratio; A role for P-centres in reducing dinitrogen? Biochem. J.292, 93–98.Google Scholar
  29. Lowe, D. J., and Smith, B. E. (1985). Electron–paramagnetic–resonance spectroscopy and related techniques in the study of nitrogenase. Biochem. Soc. Trans., 13, 579–581.Google Scholar
  30. Luque, F., and Pau, R. N. (1991). Transcriptional regulation by metals of structural genes for Azotobacter vinelandii nitrogenases. Mol. Gen. Genet, 227, 481–487.CrossRefGoogle Scholar
  31. McLean, P. A., Papaefthymiou, V., Orme-Johnson, W. H., and Miinck, E. (1987). Isotopic hybrids of nitrogenase. Mossbauer study of MoFe protein with selective 57Fe enrichment of the P cluster. J. Biol. Chem., 262, 12900–12903.Google Scholar
  32. Masepohl, B., Krey, R., and Klipp, W. (1993). The draTG gene region of Rhodobacter capsulatus is required for post–translational regulation of both the molybdenum and the alternative nitrogenase. J. Gen. Microbiol, 139, 2667–2675.CrossRefGoogle Scholar
  33. Mayer, S. M., Lawson, D. M., Gormal, C. A., Roe, S.M., and Smith, B. E. (1999) New insights into structure-function relationships in nitrogenase: A 1.6 A resolution X-ray crystallographic study of Klebsiella pneumoniae MoFe protein. J. Mol. Biol,. 292, 871–891.CrossRefGoogle Scholar
  34. Maynard, R. H., Premakumar, R., and Bishop, P. E. (1994). Mo-independent nitrogenase 3 is advantageous for diazotrophic growth of Azotobacter vinelandii on solid medium containing molybdenum. J. Bacteriol, 176, 5583–5586.Google Scholar
  35. Müller, A., Schneider, K., and Hagen, W. R. (1993). EPR spectroscopic characterization of an ‘iron only’ nitrogenase. S = 3/2 spectrum of component 1 isolated from Rhodobacter capsulatus. FEBS Lett., 303, 36–40.Google Scholar
  36. Nagatani, H. H., and Brill, W. J. (1974). The effect of Mo, W and V on the synthesis of nitrogenase components in Azotobacter vinelandii. Biochim. Biophys. Acta, 362, 160–166.CrossRefGoogle Scholar
  37. Nyborg, A. C, Johnson, J. L., Gunn, A., and Watt, G. D. (2000). Evidence for a two–electron transfer using the all-ferrous Fe protein during nitrogenase catalysis../. Biol. Chem., 275, 39307–39312.CrossRefGoogle Scholar
  38. Orme-Johnson, W.H. (1993). The molybdenum-iron protein of nitrogenase. In E. I. Stiefel, D. Coucouvanis, and W. E. Newton (Eds.), Molybdenum enzymes, cofactors, and model systems (pp.257–270). Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  39. Pau, R. N., Eldridge, M. E., Lowe, D. J., Mitchenall, L. A., and Eady, R. R. (1993). Molybdenum-independent nitrogenases of Azotobacter vinelandii: A functional species of alternative nitrogenase-3 isolated from a molybdenum–tolerant strain contains an iron-molybdenum cofactor. Biochem. J., 293, 101–107.Google Scholar
  40. Peters, J. W., Stowell, M. H. B., Soltis, S. M., Finnegan, M. G., Johnson, M. K., and Rees, D. C. (1997). Redox-dependent structural changes in the nitrogenase P-cluster. Biochemistry, 36, 1181–1187.CrossRefGoogle Scholar
  41. Pierik, A. J., Wassink, H., Haaker, H., and Hagen, W. R. (1993). Redox properties and EPR spectroscopy of the P clusters of Azotobacter vinelandii MoFe protein. Eur. J. Biochem., 212, 51–61.CrossRefGoogle Scholar
  42. Plass, W. (1994). Electronic structure of the iron–molybdenum and alternative cofactors of nitrogenase: A comparison and its consequences. J. Mol. Struct. (Theochem.), 315, 53–62.CrossRefGoogle Scholar
  43. Ravi, N., Moore, V., Lloyd, S. G., Hales, B. J., and Huynh, B. H. (1994). Mossbauer characterization of the metal clusters in Azotobacter vinelandii nitrogenase VFe protein. J. Biol. Chem., 269, 20920–20924.Google Scholar
  44. Robson, R. L., Eady, R. R., Richardson, T. H., Miller, R. W., Hawkins, M., and Postgate, J. R. (1986). The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme. Nature, 322, 388–390.CrossRefGoogle Scholar
  45. Robson, R. L., Woodley, P. R., Pau, R. N., and Eady, R. R. (1989). Structural genes for the vanadium nitrogenase from Azotobacter chroococcum. EMBOJ., 8, 1217–1224.Google Scholar
  46. Schneider, K., Gollan, U., Drottboom, M., Selsemeier-Voigt, S., and Müller, A. (1997). Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus. Eur. J. Biochem., 244, 789–800.CrossRefGoogle Scholar
  47. Schneider, K., Gollan, U., Selsemeier-Voigt, S., Plass, W., and Müller, A. (1994). Rapid purification of the protein components of a highly active “iron only” nitrogenase. Naturwissenschaften, 81, 405–408.CrossRefGoogle Scholar
  48. Schneider, K., Müller, A., Johannes, K.-U., Diemann, E., and Kottmann, J. (1991). Selective removal of molybdenum traces from growth media of N2 -fixing bacteria. Anal. Biochem., 193, 292–298.CrossRefGoogle Scholar
  49. Schneider, K., Müller, A. Schramm, U., and Klipp, W. (1991). Demonstration of a molybdenum- and vanadium-independent nitrogenase in a //7/A-deletion mutant of Rhodobacter capsulatus. Eur. J. Biochem., 195, 653–661.CrossRefGoogle Scholar
  50. Schuddekopf, K., Hennecke, S., Liese, U., Kutsche, M., and Klipp, W. (1993). Characterization of anf genes specific for the alternative nitrogenase and identification of nif genes required for both nitro-genases in Rhodobacter capsulatus. Mol. Microbiol, 8, 673–684.CrossRefGoogle Scholar
  51. Shah, V. K., Allen, J. R., Spangler, N. J., and Ludden, P. W. (1994). In vitro synthesis of the iron–molybdenum cofactor of nitrogenase. J. Biol. Chem., 269, 1154–1158.Google Scholar
  52. Siemann, S., Schneider, K., Drottboom, M, and Müller, A. (2002). The Fe-only nitrogenase and the Mo nitrogenase from Rhodobacter capsulatus. A comparative study on the redox properties of the metal clusters present in the dinitrogenase components. Eur. J. Biochem., 269, 1650–1661.CrossRefGoogle Scholar
  53. Smith, B. E. (1999). Structure, function, and biosynthesis of the metallosulfür clusters in nitrogenases. Adv. Inorg. Chem., 47, 159–218.CrossRefGoogle Scholar
  54. Smith, B. E., Lowe, D. J., and Bray, R. C. (1973). Studies by electron paramagnetic resonance on the catalytic mechanism of nitrogenase of Klebsiella pneumoniae. Biochem. J., 135, 331–341.Google Scholar
  55. Thiel, T. (1993). Characterization of genes for an alternative nitrogenase in the cyanobacterium Anabaena variabilis. J. Bacterioi, 175, 6276–6286.Google Scholar
  56. Tittsworth, R. C, and Hales, B. J. (1993). Detection of EPR signals assigned to the 1-equivalent-oxidized P-clusters of the nitrogenase MoFe protein from Azotobacter vinelandii. J. Am. Chem. Soc, 115, 9763–9767.CrossRefGoogle Scholar
  57. Tittsworth, R. C, and Hales, B. J. (1996). Oxidative titration of the nitrogenase VFe protein from Azotobacter vinelandii: An example of redox–gated electron flow. Biochemistry, 35, 479–487.CrossRefGoogle Scholar
  58. Walmsley, J., and Kennedy, C. (1991). Temperature-dependent regulation by molybdenum and vanadium of expression of the structural genes encoding three nitrogenases in Azotobacter vinelandii. Appl. Environ. Microbiol, 57, 622–624.Google Scholar
  59. Wang, G., AngerMüller, S., and Klipp, W. (1993). Characterization of Rhodobacter capsulatus genes encoding a molybdenum transport system and putative molybdenum-pterin–binding proteins. J. Bacterioi, 775,3031–3042.Google Scholar
  60. Waugh, S. I., Paulsen, D. M., Mylona, P. V., Maynard, R. H., Premakumar, R., and Bishop, P. E. (1995). The genes encoding the delta subunits of dinitrogenase 2 and 3 are required for Mo-independent diazotrophic growth by Azotobacter vinelandii. J. Bacterioi, 177, 1505–1510.Google Scholar
  61. Yoo, S. J., Angove, H. C, Burgess, B. K., Hendrich, M. P., and Munck, E. (1999) Mossbauer and integer–spin EPR studies and spin–coupling analysis of the [Fe4S4]0 cluster of the Fe protein from Azotobacter vinelandii nitrogenase. J. Am. Chem. Soc, 121, 2534–2545.CrossRefGoogle Scholar
  62. Zioni, F., Robson, R. M., and Robson, R. L. (1993). Organization of potential alternative nitrogenase genes from Clostridium pasteurianum. Biochim. Biophys. Acta, 1174, 83–86.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • K. Schneider
    • 1
  • A. Müller
    • 1
  1. 1.Fakultät für Chemie, Lehrstuhl für Anorganische Chemie IUniversität BielefeldBielefeldGermany

Personalised recommendations