Advertisement

Combining Methods for Subsurface Prediction

  • Petter Abrahamsen
Part of the Quantitative Geology and Geostatistics book series (QGAG, volume 14)

The depth to subsurfaces in a multi-layer model is obtained by adding the thickness of layers. However, the choice of layering is not unique so there will often be alternative ways of obtaining the depth to a particular subsurface. Each layer thickness can be described by a stochastic model accounting for uncertainties in the thickness. Stochastic models for the depth to subsurfaces are obtained from these. Alternative layer models will give alternative stochastic models and thus alternative depth predictions for the same subsurface. Two approaches to resolve this ambiguity is proposed. The first uses an established method of unbiased linear combination of predictors. The second and new approach combines the alternative stochastic models into a single stochastic model giving a single predictor for subsurface depth. This predictor performs similarly to the approach combining several predictors while drastically reducing computational costs. The proposed method applies to layered geological structures using a combination of universal or Bayesian kriging and cokriging.

Keywords

Stochastic Model Residual Error Interval Velocity Universal Kriging Multilayer Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer 2005

Authors and Affiliations

  • Petter Abrahamsen
    • 1
  1. 1.Norwegian Computing CenterNorway

Personalised recommendations