Advertisement

Keywords

Nitrogen Fixation Plant Soil Symbiotic Nitrogen Fixation Frankia Strain Nodulation Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arveby, A. S., and Huss-Danell, K. (1988). Presence and dispersal of infective Frankia in peat and meadow soils in Sweden. Biol. Fertil. Soils, 6, 39–44.Google Scholar
  2. Baker, D., and Miller, N. G. (1980). Ultrastructural evidence for the existence of actinorhizal symbioses in the late Pleistocene. Can. J. Bot., 58, 1612–1620.Google Scholar
  3. Baker, D., and O’Keefe, D. (1984). A modified sucrose fractionation procedure for the isolation of frankiae from actinorhizal root nodules and soil samples. Plant Soil, 78, 23–28.Google Scholar
  4. Baker, D. D., and Schwintzer, C. W. (1990). Introduction. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia andactinorhizal plants (pp. 3-13). New York, NY: Academic Press.Google Scholar
  5. Barlow, B. A. (1983). Casuarinas, a taxonomic and biogeographic review. In S. J. Midgley, J. W. Turnbull, and R. D. Johnston (Eds.), Casuarina ecology, managementandutilization (pp. 10-18). Melbourne, Australia: CSIRO.Google Scholar
  6. Batzli, J. M., and Dawson, J. O. (1999). Development of flood-induced lenticels in red alder nodules prior to the restoration of nitrogenase activity. Can. J. Bot., 77, 1373–1377.Google Scholar
  7. Becking, J. H. (1970). Frankiaceae, fam. Nov. (Actinomycetales) with one new combination and six new species of the genus Frankia Brunchorst 1886. Int. J. Syst. Bacteriol., 20, 201–220.Google Scholar
  8. Benecke, U. (1969). Symbionts of alder nodules in New Zealand. Plant Soil, 30, 149–149.Google Scholar
  9. Benoit, L. F., and Berry, A. M. (1997). Flavonoid-like compounds from seeds of red alder (Alnus rubra) influence host nodulation by Frankia (Actinomycetales). Physiol. Plant., 99, 588–593.Google Scholar
  10. Benoit, P., Müller, A., Diem, H. G., and Schwenke, J. (1992). High-molecular-mass multi-catalytic proteinase complexes produced by the nitrogen-fixing actinomycete Frankia strain BR. J. Bacteriol., 174, 1495–1504.Google Scholar
  11. Benson, D. R., and Eveleigh, D. E. (1979). Nitrogen fixing homogenates of Myrica pensylvanica (bayberry) non-legume root nodules. Soil Biol. Biochem., 11, 331–334.Google Scholar
  12. Bermudez de Castro, F., Miguel, C., and Rodriguez-Barrueco, C. (1976). A study of the capacity of soil to induce nodules of Alnus glutinosa (L.) Gaertn. and Myrica gale L. with special reference to the specificity of the endophytes. Ann. Microbiol., 127A, 307-315.Google Scholar
  13. Bond, G. (1951). The fixation of nitrogen associated with the root nodules of Myrica gale L., with special reference to its pH relation and ecological significance. Ann. Bot., 15, 447–459.Google Scholar
  14. Bond, G. (1957). The development and significance of the root nodules of Casuarina. Ann. Bot., 21, 373-380.Google Scholar
  15. Bond, G. (1983). Taxonomy and distribution of non-legume nitrogen-fixation systems. In J. C. Gordon and C. T. Wheeler (Eds.), Biolgical nitrogen fixation in forest ecosystems: Foundationsandapplications (pp. 55-87). The Hague, The Netherlands: Martinus Nijhoff/Dr. W. Junk.Google Scholar
  16. Bond, G., and Mackintosh, A. H. (1975). Effect of nitrate nitrogen on the nodule symbioses of Coriaria and Hippophae. P. Roy. Soc. Lond. B Bio., 190, 199–209.Google Scholar
  17. Bormann, B. T., Cromack, K., and Russel, W. O. (1994). Influences of red alder on soils andlong-term ecosystem productivity. In D. E. Hibbs, D. S. DeBell and R. F. Tarrant (Eds.), The biologyandmanagement of red alders (pp. 47-56). Corvallis, OR: Oregon State University Press.Google Scholar
  18. Boyer, G. L., Kane, S. A., Alexander, J. A., and D. B. Aronson. (1999). Siderophore formation in iron-limited cultures of Frankia sp. 52065 and Frankia sp. CeSI5. Can. J. Bot., 77 1316-1320.Google Scholar
  19. Bryant, J. P., Wieland, G. D., Reichardt, P. B., Lewis, V. E., and McCarthy, M. C. (1983). Pinosylvin methyl ether deters snowshoe hare feeding on green alder. Science, 222, 1023–1025.PubMedGoogle Scholar
  20. Burleigh, S. H., and Dawson, J. O. (1994). Occurrence of Myrica-nodulating Frankia in Hawaiian volcanic soils. Plant Soil, 164, 283–289.Google Scholar
  21. Burleigh, S. H., and Dawson, J. O. (1995). Spores of Frankia strain HFPCcI3 nodulate Casuarina equisetifolia after passage through the digestive tracts of captive parakeets (Melopsittacus undulatus). Can. J. Bot., 75, 1527–1530.Google Scholar
  22. Burleigh, S., and Torrey, J. G. (1990). Effectiveness of different Frankia cell types as inocula for the actinorhizal plant Casuarina. App. Environ. Microbiol., 56, 2565-2567.Google Scholar
  23. Callaham, D., Del Tredici, P., and Torrey, J. G. (1978). Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science, 199, 899–902.PubMedGoogle Scholar
  24. Carlson, P. J., and Dawson, J. O. (1985). Soil nitrogen changes, early growth, and response to soil internal drainage of a plantation of Alnus jorullensis in the Colombian highlands. Turrialba, 35, 141-150.Google Scholar
  25. Chepstow-Lusty, A. J., Bennett, K. D., Fjeldsa, J., Kendall, A., Galliano, W., and Tupayachi Herrera, A. (1998). Tracing 4,000 years of environmental history in the Cuzco area, Peru, from the pollen record. Mt. Res. Dev., 18, 159–172.Google Scholar
  26. Clausen, T. P., Reichardt, P. B., and Bryant, J. P. (1987). Pinosylvin and pinosylvin methyl ether as feeding deterrents in green alder. J. Chem. Ecol., 12, 2117–132.Google Scholar
  27. Clawson, M. L., Carú, M., and Benson, D. R. (1998). Diversity of Frankia strains of root nodules of plants from the families Elaeagnaceae and Rhamnaceae. Appl. Environ. Microbiol., 64, 3539–3543.PubMedGoogle Scholar
  28. Clawson, M. L., Gawronski, J., and Benson, D. R. (1999). Dominance of Frankia strains instands of Alnus incana subsp. rugosa and Myrica pensylvanica. Can. J. Bot., 77, 1203–1207.Google Scholar
  29. Côté, B., Carlson, R. W., and Dawson, J. O. (1988). Leaf photosynthetic characteristics of seedlings of actinorhizal Alnusssp. and Elaeagnus spp. Photosynth. Res., 16, 211–218.Google Scholar
  30. Côté, B., and Dawson, J. O. (1986). Autumnal changes in total nitrogen, salt-extractedproteins, and amino acids in leaves and adjacent bark of black alder, eastern cottonwood, and white basswood. Physiol. Plant., 67, 102–108.Google Scholar
  31. Coyne, P. D. (1973). (Ph.D. thesis, Australian National University, Canberra, Australia.). Summarized by Torrey, J. G. Casuarina: Actinorhizal nitrogen-fixing tree of the tropics. In Biological nitrogen fixation technology for tropical agriculture (pp. 427-439). Cali, Colombia: Centro Internacional de Agricultura Tropical.Google Scholar
  32. Dalton, D. A., and Zobel, D. B. (1977). Ecological aspects of nitrogen fixation by Purshia tridentata. Plant Soil, 48, 57–80.Google Scholar
  33. Dawson, J. O. (1986). Actinorhizal plants: Their use in forestry and agriculture. Outlook Agr., 15, 202-208.Google Scholar
  34. Dawson, J. O. (1990). Interactions among actinorhizal and associated species. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia andactinorhizal plants (pp. 288-316). New York, NY: Academic Press.Google Scholar
  35. Dawson, J. O. (1992). Nitrogen fixation in forestry and agroforestry. In F. B. Metting, Jr. (Ed.), Soil microbial ecology (pp. 227-253). Basel, Switzerland: Marcel Decker.Google Scholar
  36. Dawson, J. O., and Gibson, A. H. (1987). Sensitivity to sodium chloride of selected Frankia isolates from Casuarina, Allocasuarina and North American host plants. Physiol. Plant., 70, 272–278.Google Scholar
  37. Dawson, J. O., and Gordon, J. C. (1979). Nitrogen fixation in relation to photosynthesis in Alnus glutinosa. Bot. Gaz., 140, S70-S75.Google Scholar
  38. Dawson, J. O., and Klemp, M. T. (1987). Variation in the capacity of black alder to nodulate in central Illinois soils. In R. L. Hay, F. W. Woods, and H. DeSelm (Eds.), Sixth central hardwood forest conference (pp. 255-260). Knoxville, TN: Department of Forestry, Wildlife, and Fisheries, University of Tennessee.Google Scholar
  39. Dawson, J. O., Kowalski, D. G., and Dart, P. J. (1989). Variation with soil depth, topographicposition and host species in the capacity of soils from an Australian locale to nodulate Casuarina and Allocasuarina seedlings. Plant Soil, 118, 1–13.Google Scholar
  40. Dawson, J. O., and Seymour, P. E. (1983). Effects of juglone concentration on growth in vitro of Frankia ArI3 and Rhizobium japonicum strain 71. J. Chem. Ecol., 9, 1175-1183.Google Scholar
  41. Diem, H. G., and Dommergues, Y. R. (1990). Current and potential uses and management of Casuarinaceae in the tropics and subtropics. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia andactinorhizal plants (pp. 317-342). New York, NY: Academic Press.Google Scholar
  42. Diem, H. G., and Gauthier, D. (1982). Effet de l’infection endomycorrhizienne (Glomus mosseae) sur la nodulation et la croissance de Casuarina equisetifolia. C.R. Acad. Sci. III -Vie 294, 215-218.Google Scholar
  43. Dixon, R. O. D., and Wheeler, C. T. (1983). Biochemical, physiological, and environmental aspects of symbiotic nitrogen fixation. In J. C. Gordon and C. T. Wheeler (Eds.), Biological nitrogen fixation in forest ecosystems: foundationsandapplications (pp. 107-171). The Hague, The Netherlands: Nijhoff/Dr. W. Junk.Google Scholar
  44. Dixon, R. O. D., and Wheeler, C. T. (1986). Nitrogen fixation in plants. New York, NY: Chapman and Hall.Google Scholar
  45. Dommergues, Y. R. (1997). Contribution of actinorhizal plants to tropical soil productivity and rehabilitation. Soil Biol. Biochem., 29, 931–941.Google Scholar
  46. Dow, M. A., and Schwintzer, C. R. (1999). Seed germination, seedling emergence, and seed bank ecology of sweet-fern (Comptonia peregrina (L.) Coult.). Can. J. Bot., 77, 1378–1386.Google Scholar
  47. El-Lakany, M. H., and Luard, J. E. (1982). Comparative salt tolerance of selected Casuarina species. Austr. Forest Res., 13, 11–20.Google Scholar
  48. Faure-Raynaud, M., Bonnefoy-Poirier, M. A., and Moiroud, A. (1986). Influence de pH acides sur la viabilité d’isolats de Frankia. Plant Soil, 96, 347–358.Google Scholar
  49. Friedrich, J. M., and Dawson, J. O. (1984). Soil nitrogen concentration and Juglans nigra growth in mixed plots with nitrogen-fixing Alnus, Elaeagnus, Lespedeza, and Robinia species. Can. J. Forest Res., 14, 864–868.Google Scholar
  50. Gauthier, D., Jaffre, T., and Prin, Y. (2000). Abundance of Frankia from Gymnostomaspp.in the rhizosphere of Alphitonia neocaledonica, a non-nodulated Rhamnaceae endemic to New Caledonia. Eur. J. Soil Biol., 36, 169–175.Google Scholar
  51. Girgis, M. G. Z., and Schwencke, J. (1993). Differentiation of Frankia by their electrophoretic patterns of intracellular esterases and aminopeptidases. J. Gen. Microbiol., 139, 2225-2232.Google Scholar
  52. Goldman, C. R. (1961). The contribution of alder trees (Alnus tenuifolia) to the primary productivity of Castle Lake, California. Ecol., 42, 282–288.Google Scholar
  53. Gordon, J. C., and Dawson, J. O. (1979). Potential uses of nitrogen-fixing trees and shrubs in commercial forestry. Bot. Gaz., 140, 88–90.Google Scholar
  54. Gordon, J. C., and Wheeler, C. T. (1978). Whole plant studies on photosynthesis and acetylene reduction in Alnus glutinosa. New Phytol., 80, 179–186.Google Scholar
  55. Griffiths, A. P., and McCormick, L. H. (1984). Effects of soil acidity on nodulation of Alnus glutinosa and viability of Frankia. Plant Soil, 79, 429–434.Google Scholar
  56. Haansu, J. P., Klika, K. D., Söderholm, P. P., Ovcharenko, V. V., Pihlaja, K., et al. (2001). Isolation and biological activity of frankiamide. J. Ind. Microbiol. Biotechnol., 27, 62–66.Google Scholar
  57. Hahn, D., Nickel, A., and Dawson, J. O. (1999). Assessing Frankia populations in plants and soil using molecular methods. FEMS Microbiol. Ecol., 29, 215–227.Google Scholar
  58. Harborne, J. (1973). Phytochemical methods. London, UK: Chapman and Hall.Google Scholar
  59. Harriott, O. T., and Bourret, A. (2003). Improving dispersed growth of Frankia using Carbopol. Plant Soil, 254, 69–74.Google Scholar
  60. Hasebe, M., Kofuji, R., Shindo, S., Hiwatashi, Y., Kobayashi-Arakawa, S., et al. (1998). Division of speciation mechanisms II: Annual report 1998. Japanese National Institute for Basic Biology. Retrieved October 10, 2003 from http://www.nibb.ac.jp/annual_report/1998/24.html.Google Scholar
  61. Haukioja, E. (1991). Cyclic fluctuations in density: Interactions between a defoliator and its host tree. Acta Oecol., 12, 77–88.Google Scholar
  62. Hensley, D. L., and Carpenter, P. L. (1984). Effect of lime additions to acid strip-mine spoil on survival, growth and nitrogen fixation (acetylene reduction) of several woody legume and actinomycete-nodulated species. Plant Soil, 79, 353–367.Google Scholar
  63. Hensley, D. L., and Carpenter, P. L. (1987). The effect of cadmium on growth and acetylene reduction (N2 fixation) by Alnus glutinosa. Hort. Science, 22, 69–70.Google Scholar
  64. Hewitt, E. J., and Bond, G. (1961). Molybdenum and the fixation of nitrogen in Casuarinaand Alnus root nodules. Plant Soil, 14, 159–175.Google Scholar
  65. Hibbs, D. E., and Cromack, Jr., K. (1990). Actinorhizal plants in Pacific Northwest forests. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia andactinorhizal plants (pp. 343-363). New York, NY: Academic Press.Google Scholar
  66. Hibbs, D. E., DeBell, D. S., and Tarrant, R. F. (Eds.) (1994). The biology and management of red alder. Corvallis, OR: Oregon State University Press.Google Scholar
  67. Huguet, V. (2003). Spécificité d’association du couple symbiotique Frankia/Myrica (n>Ph.D. thesis, Université Claude Bernard Lyon I, France).Google Scholar
  68. Huguet, V., Batzli, J. M., Zimpfer, J. F., Normand, P., Dawson, J. O., and Fernandez, M. P. (2001). Diversity and specificity of Frankia strains in nodules of sympatric Myrica gale, Alnus incana, and Shepherdia canadensis determined by rrs gene polymorphism. Appl. Environ. Microbiol., 67, 2116-2122.PubMedGoogle Scholar
  69. Huss-Danell, K. (1990). The physiology of actinorhizal nodules. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia andactinorhizal plants (pp. 129-156). New York, NY: Academic Press.Google Scholar
  70. Huss-Danell, K. (1997). Actinorhizal plants and their N2 fixation. New Phytol., 136, 375–405.Google Scholar
  71. Huss-Danell, K., and Frej, A. (1986). Distribution of Frankia in soils from forests and afforestation sites in northern Sweden. Plant Soil, 90, 407–418.Google Scholar
  72. Huss-Danell, K., Uliassi, D., and Renberg, I. (1997). River and lake sediments as sources of infective Frankia (Alnus). Plant Soil, 197, 35–39.Google Scholar
  73. Igual, J. M., and Dawson, J. O. (1999). Stimulatory effects of aluminum on in vitro growth of Frankia. Can. J. Bot., 77, 1321–1326.Google Scholar
  74. Igual, J. M., Rodríguez-Barrueco, C., and Cervantes, E. (1997). The effects of aluminum on nodulation and symbiotic nitrogen fixation in Casuarina cunninghamiana Miq. Plant Soil, 190, 41–46.Google Scholar
  75. Ingsted, T. (1980). Growth, nutrition and nitrogen fixation in grey alder at varied rate of nitrogen addition. Physiol. Plant., 50, 353–364.Google Scholar
  76. Jeong, S. C., and Myrold, D. D. (2001). Population size and diversity of Frankia in soils of Ceanothus velutinus and Douglas-fir stands. Soil Biol. Biochem., 33, 931- 941.Google Scholar
  77. Kaelke, C. M., and Dawson, J. O. (2003). Seasonal flooding regimes influence survival, nitrogen fixation, and the partitioning of nitrogen and biomass in Alnus incana ssp. rugosa. Plant Soil, 254, 167–177.Google Scholar
  78. Kapulnik, Y., Joseph, C. M., and Phillips, D. A. (1987). Flavone limitations to root nodulation and symbiotic nitrogen fixation in alfalfa. Plant Physiol., 84, 1193–1196.PubMedGoogle Scholar
  79. Keeley, S. C. (1989). The California chaparral: Paradigms reexamined. Natural History Museum of Los Angeles County, CA, Science Series Number 34.Google Scholar
  80. Knowlton, S., Berry, A., and Torrey, J. G. (1980). Evidence that associated soil bacteria may influence root hair infection of actinorhizal plants by Frankia. Can. J. Microbiol., 26, 971–977.PubMedGoogle Scholar
  81. Knowlton, S., and Dawson, J. O. (1983). Effects of Pseudomonas cepacia and cultural factors on the nodulation of Alnus rubraroots by Frankia. Can. J. Bot., 61, 2877–2882.Google Scholar
  82. Kohls, S. J., Baker, D. D., van Kessel, C., and Dawson, J. O. (2003). An assessment of soil enrichment by actinorhizal N2fixation using δ 15N values in a chronosequence of deglaciation at Glacier Bay, Alaska. Plant Soil, 254, 11–17.Google Scholar
  83. Kohls, S. J., Thimmapuram, J., Bushena, C. A., Paschke, M. W., and Dawson, J. O. (1994). Nodulation patterns of actinorhizal plants in the family Rosaceae. Plant Soil, 162, 229-239.Google Scholar
  84. Krajick, K. (1998). Green farming by the Incas? Science, 281, 323.Google Scholar
  85. Krueger, K. W., and Ruth, R. H. (1968). Photosynthesis of red alder, Douglas-fir, Sitka spruce, and western hemlock seedlings. In Biology of alder: Proceedings of a symposium; 1967 April 14-15. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station.Google Scholar
  86. Krumholz, G. D., Chval, M. S., McBride, M. J., and Tisa, L. S. (2003). Germination and physiological properties of Frankia spores. In P. Normand, K. Pawlowski, and J. O. Dawson (Eds.), Frankia symbiosis (pp. 57-68). Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  87. Lai, Chia-Chin. (1996). The effect of tyrosine on pigmentation, growth, and infectivity of Frankia (M.Sc. thesis, University of Illinois at Urbana-Champaign).Google Scholar
  88. Laplaze, L., Gherbi, H., Frutz, T., Pawlowski, K., Franche, C., et al. (1999). Flavan-containing cells delimit Frankia-infected compartments in Casuarina glauca nodules. Plant Physiol., 121, 113-122.PubMedGoogle Scholar
  89. Lawrence, D. B., Schoenike, R. E., Quispel, A., and Bond, G. (1967). The role of Dryas drummondii in vegetation development following ice recession at Glacier Bay, Alaska, with special reference to its nitrogen fixation by root nodules. J. Ecol., 55, 793-813.Google Scholar
  90. Lawrie, A. C. (1982). Field nodulation in nine species of Casuarina in Victoria. Aust. J. Bot., 30, 447-460.Google Scholar
  91. Lechevalier, M. P., and Lechevalier, H. A. (1990). Systematics, isolation, and culture ofFrankia. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia andactinorhizal plants (pp. 35-60). New York, NY: Academic Press.Google Scholar
  92. Li, C. Y., Lu, K., Trappe, J., and Bollen, W. (1970). Separation of phenolic compounds in alkali hydrolysates of forest soil by thin-layer chromatography. Can. J. Soil Sci., 50, 458-460.Google Scholar
  93. Li, C. Y., Trappe, J. M., and Bollen, W. B. (1972). Poria weirii-inhibiting and other phenolic compounds in roots of red alder and Douglas fir.Microbios, 5, 65-68.PubMedGoogle Scholar
  94. Lopez, M. F., Fontaine, M. S., and Torrey, J. G. (1984). Levels of trehalose and glycogen in Frankia sp. HFPArl3 (Actinomycetates). Can. J. Microbiol., 30, 746-752.Google Scholar
  95. Maggia, L., and Bousquet, J. (1994). Molecular phylogeny of the actinorhizal Hamamelidae and relationships with host promiscuity towards Frankia. Mol. Ecol., 3, 459-467.Google Scholar
  96. Martin, A. C., Zim, H. S., and Nelson, A. L. (1961). American wildlife & plants: A guide to wildlife food habitats. New York, NY: Dover Publications.Google Scholar
  97. Martin, K. J., Posavatz, N. J., and Myrold, D. D. (2003). Nodulation potential of soils from red alder stands covering a wide age range. Plant Soil, 254, 187-192.Google Scholar
  98. Martin, R. B. (1988). Bioinorganic chemistry of aluminum. In H. Sigel and A. Sigel (Eds.), Metal ions in biological systems: Aluminumandits role in biology (pp. 1-57). New York, NY: Marcel Dekker.Google Scholar
  99. Maunuksela, L., Hahn, D., and Haahtela, K. (2000). Effect of freezing of soils on nodulation capacities of total and specific Frankia populations. Symbiosis, 29, 107-120.Google Scholar
  100. Maunuksela, L. Zepp, K., Koivula, T., Zeyer, J., Haahtela, K., and Hahn, D. (1999). Analysis of Frankia populations in three soils devoid of actinorhizal plants. FEMS Microbiol. Ecol., 28, 11-21.Google Scholar
  101. McIlveen, W. D., and Cole, H. (1976). Spore dispersal of Endogonaceae by worms, ants, wasps, and birds. Can. J. Bot., 54, 1486-1489.Google Scholar
  102. McKey, D. (1994). Legumes and nitrogen: The evolutionary ecology of a nitrogen-demanding lifestyle. In J. I. Sprent and D. McKey (Eds.), Advances in legume systematics: Part 5 - the nitrogen factor (pp. 211-228). Kew, UK: Royal Botanic Gardens.Google Scholar
  103. McNabb, D. H., and Cromack, K. (1985). Dinitrogen fixation by a mature Ceanothus velutinus (Dougl.) stand in the Western Oregon Cascades. Can. J. Bot., 29, 1014-1021.Google Scholar
  104. McVean, D. N. (1956). Ecology of Alnus glutinosa (L.) Gaertn. III. Seedling establishment. J. Ecol., 44, 195-218.Google Scholar
  105. Mejstrik, V., and Benecke, U. (1969). The ectotrophic mycorrhizas of Alnus viridis (Chaix) DC and their significance in respect to phosphorous uptake. New Phytol., 68, 141-149.Google Scholar
  106. Midgley, S. J., Turnbull, J. W., and Johnson, R. D. (1983). Casuarinaecology, management and utilization. Melbourne, Austrralia: CSIRO.Google Scholar
  107. Müller, A., Benoit, P., Diem, H. G., and Schwencke, J. (1991). Age-dependent changes in extracellular protein, aminopeptidase activities in Frankia. J. Gen. Microbiol., 137, 2787-2796.PubMedGoogle Scholar
  108. Murai, S. (1964). Phytotaxonomical and geobotanical studies on genus Alnus in Japan (III).Taxonomy of whole world species and distribution of each section. Bull. Gov. Forest Exp. Sta.(Tokyo, Japan), 171, 1-107.Google Scholar
  109. Myrold, D. D., and Huss-Danell, K. (1994). Population dynamics of Alnus-infective Frankia in a forest soil with and without host trees. Soil Biol. Biochem., 26, 533-540.Google Scholar
  110. Navarro, E., Bousquet, J., Moiroud, A., Munive, A., Piou, D., and Normand, P. (2003). Molecular phylogeny of Alnus (Betulaceae), inferred from nuclear ribosomal DNA ITS sequences. Plant Soil, 254, 207-217.Google Scholar
  111. Navarro, E., Nalin, R., Gauthier, D., and Normand, P. (1997). The nodular microsymbionts of Gymnostoma spp. are Elaeagnus-infective Frankiastrains. Appl. Environ. Microbiol., 63, 1610-1616.PubMedGoogle Scholar
  112. Neave, I. A., and Dawson, J. O. (1989). Juglone reduces growth, nitrogenase activity, and root respiration of actinorhizal black alder seedlings. J. Chem. Ecol., 15, 1823-1836.Google Scholar
  113. Neave, I. A., Dawson, J. O., and DeLucia, E. H. (1989). Autumnal photosynthesis is extended in nitrogen-fixing European black alder compared with white basswood: Possible adaptive significance. Can. J. Forest Res., 19, 12-17.Google Scholar
  114. Nickel, A. (2000). Population dynamics of Frankia in soil (Ph.D. thesis, Swiss Technical University (ETH), Zürich, Switzerland).Google Scholar
  115. Nickel, A., Hahn, D., Zepp, K., and Zeyer, J. (1999). In situ analysis of introduced Frankia populations in root nodules obtained on Alnus glutinosa grown under different water availability. Can. J. Bot., 77, 1231-1238.Google Scholar
  116. Oremus, P. A. I. (1980). Occurrence and infective potential of the endophyte of Hippophaë rhamnoidesL. ssp. rhamnoides in coastal sand dune areas. Plant Soil, 56, 123-139.Google Scholar
  117. Paschke, M. W. (1997). Actinorhizal plants in rangelands of the western United States. J. Range Manage., 50, 62-72.Google Scholar
  118. Paschke, M. W., and Dawson, J. O. (1992a). The occurrence of Frankia in tropical forest soils of Costa Rica. Plant Soil, 142, 63-67.Google Scholar
  119. Paschke, M. W., and Dawson, J. O. (1992b). Frankia abundance in soils beneath Betual nigra and other non-actinorhizal woody plants. Acta Oecol., 13, 407-415.Google Scholar
  120. Paschke, M. W., and Dawson, J. O. (1993). Avian dispersal of Frankia. Can. J. Bot., 71, 1128-1131.Google Scholar
  121. Paschke, M. W., Dawson, J. O., and Condon, B.M. (1994). Frankia in prairie, forest, and cultivated soils of central Illinois, U.S.A. Pedobiologia, 38, 546-551.Google Scholar
  122. Paschke, M. W., Dawson, J. O., and David, M. B. (1989). Soil nitrogen mineralization in mixed plantations of black walnut with actinorhizal autumn olive or black alder. Plant Soil, 118, 33-42.Google Scholar
  123. Perradin, Y., Mottet, M., and LaLonde, M. (1983). Influence of phenolics on in vitro growth of Frankia strains. Can. J. Bot., 61, 2807-2814.Google Scholar
  124. Prin, Y., and Rougier, M. (1987). Preinfection events in the establishment of the Alnus-Frankia symbiosis: Study of the root hair deformation step. Plant Physiol., 6, 99-106.Google Scholar
  125. Reddell, P., Bowen, G. D., and Robson, A. D. (1985). The effects of soil temperature on plant growth, nodulation and nitrogen fixation in Casuarina cunninghamiana. Miq. New Phytol., 101, 441-450.Google Scholar
  126. Reddell, P., Rosbrook, P. A., Bowen, G. D., and Gwaze, D. (1988). Growth responses in Casuarina cunninghamiana plantings to inoculation with Frankia. Plant Soil, 108, 79-86.Google Scholar
  127. Reddell, P., and Spain, A. V. (1991). Earthworms as vectors of viable propagules of mycorrhizal fungi. Soil Biol. Biochem., 23, 767-774.Google Scholar
  128. Richards, J. W., Krumholz, G. D., Chval, M. S., and Tisa, L. S. (2002). Heavy metal resistance patterns of Frankia strains. Appl. Environ. Microbiol., 68, 923-927.PubMedGoogle Scholar
  129. Richardson, D. M., Allsopp, N., D’Antonio, C. M., Milton, S. J., and Rejmanek, M. (2000). Plant invasions - the role of mutualisms. Biol. Rev., 75, 65-93.PubMedGoogle Scholar
  130. Righetti, T. L., Chard, C. H., and Backhause, R. A. (1986). Soil and environmental factors related to nodulation in Cowaniaand Purshia. Plant Soil, 91, 147-160.Google Scholar
  131. Righetti, T. L., and Munns, D. N. (1981). Soil factors limiting nodulation and nitrogen fixation in Purshia. In J. M. Lyons, R. C. Valentine, D. A. Phillips, D. W. Rains, and R. C. Huffaker (Eds.), Genetic engineering of symbiotic nitrogen fixationandconservation of fixed nitrogen (pp. 395-407). New York, NY: Plenum Press.Google Scholar
  132. Roberts, N. (1998). The Holocene: An environmental history (Second Edition). Oxford, UK: Blackwell.Google Scholar
  133. Rodriguez-Barrueco, C. (1968). The occurrence of the root nodule endophytes of Alnus glutinosa and Myrica gale in soils. J. Gen. Microbiol., 52, 189-194.Google Scholar
  134. Rodriguez-Barrueco, C., Mackintosh, A. H., and Bond, G. (1970). Some effects of combined nitrogen on the nodule symbioses of Casuarina and Ceanothus. Plant Soil, 33, 129-139.Google Scholar
  135. Rösch, D., Bergmann, M., Knorr, D., and Kroh, L. W. (2003). Structure-antioxidant efficiency relationships of phenolic compounds and their contribution to the antioxidant activity of sea buckthorn juice. J. Agr. Food Chem., 51, 4233-4239.Google Scholar
  136. Rose, S. L., and Youngberg, C. T. (1981). Tripartite association of snowbrush (Ceanothus velutinus): Effect of vesicular-arbuscular mycorrhizae on growth nodulation and nitrogen fixation. Can. J. Bot., 59, 34-39.Google Scholar
  137. Safo-Sampath, S., and Torrey, J. G. (1988). Polysaccharide-hydrolysing enzymes of Frankia (Actinomycetales). Plant Soil, 112, 89-97.Google Scholar
  138. Seguin, A., and Lalonde, M. (1989). Detection of pectolytic activity and pel homologous sequences in Frankia. Plant Soil, 118, 221-229.Google Scholar
  139. Schramm, J. R. (1966). Plant colonization studies on black wastes from anthracite mining in Pennsylvania. T. Am. Philos. Soc., 56, 1-194.Google Scholar
  140. Schwencke, J., and Carú, M. (2001). Advances in actinorhizal symbiosis: Host plant-Frankia interactions, biology, and applications in arid land reclamation. A review. Arid Land Res. Manag., 15, 285-327.Google Scholar
  141. Schwintzer, C. R., Berry, A. M., and Disney, L. D. (1982). Seasonal pattern of root nodule growth, endophyte morphology, nitrogen activity and shoot development in Myrica gale. Can. J. Bot., 60, 746-757.Google Scholar
  142. Seiler, J. R., and Johnson, J. D. (1984). Growth and acetylene reduction of black alder seedlings in response to water stress. Can. J. Forest Res., 14, 477-480.Google Scholar
  143. Selim, S., Delacour, S., and Schwencke, J. (1996). Specific long-chain fatty acids promote optimal growth of Frankia: Accumulation and intracellular distribution of palmitic and propionic acid. Arch. Microbiol., 165, 252-257.PubMedGoogle Scholar
  144. Shindo, H., Ohta, S., and Kuwatsuka, S. (1978). Behavior of phenolic substances in the decaying process of plants. IX. Distribution of phenolic acids in soils of rice paddy fields and forests. Soil Sci. Plant Nutr., 24, 233-243.Google Scholar
  145. Silvester, W. B. (1977). Dinitrogen fixation by plant associations excluding legumes. In R. Hardy and W. Silvester (Eds.), A treatise of dinitrogen fixation(Vol. 4, pp. 141-190). New York, NY: Academic Press.Google Scholar
  146. Silvester, W. B., and Harris, S. L. (1990). Oxygen regulation and hemoglobin. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia andactinorhizal plants (pp. 157-176). New York, NY: Academic Press.Google Scholar
  147. Silvester, W. B., Whitbeck, J., Silvester, J. K., and Torrey, J. G. (1988a). Growth, nodule morphology, and nitrogenase activity of Myrica galewith roots grown at various oxygen levels. Can. J. Bot., 66, 1762-1771.Google Scholar
  148. Silvester, W. B., Silvester, J. K., and Torrey, J. G. (1988b). Adaptation of nitrogenase to varying oxygen tension in root nodules of Alnus incana ssp. rugosa. Can. J. Bot., 66, 1772-1779.Google Scholar
  149. Simonet, P., Navarro, E., Rouvier, C., Reddell, P., Zimpfer, J., et al. (1999). Co-evolution between Frankia populations and host plants in the family Casuarinaceae and consequent patterns of global dispersal. Env. Microbiol., 1, 525-533.Google Scholar
  150. Smolander, A. (1990). Frankia populations under different tree species - with a special emphasis on soils under Betula pendula. Plant Soil, 121, 1-10.Google Scholar
  151. Smolander, A., Rönkkö, R., Nurmiaho-Lassila, E.-L., and Haahtela, K. (1990). Growth of Frankia in the rhizosphere of Betula pendula, a nonhost tree species. Can. J. Microbiol., 36, 649-656.Google Scholar
  152. Smolander, A., and Sundman, V. (1987). Frankia in acid soils of forests devoid of actinorhizal plants. Physiol. Plant., 70, 297-303.Google Scholar
  153. Smolander, A., van Dijk, C., and Sundman, V. (1988). Survival of Frankia strains introduced into soil. Plant Soil, 106, 65-72.Google Scholar
  154. Soltis, D. E., Soltis, P. S., Morgan, D. R., Swensen, S. M., Mullin, B. C., et al. (1995). Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc. Natl. Acad. Sci. U.S.A., 92, 2647-2651.PubMedGoogle Scholar
  155. Su, H., and Lin, L.-P. (1989). The dissemination of endophytes and existence of endomycorrhiza on the rhizoplane of Alnus formosana. J. Chin. Agric. Chem. Soc., 27, 513-523.Google Scholar
  156. Subbarao, N. S., and Rodríguez-Barrueco, C. (1995). Casuarinas. Lebanon, NH: Science Publishers.Google Scholar
  157. Sundström, K.-R., and Huss-Danell, K. (1987). Effects of water stress on nitrogenase activity in Alnus incana. Physiol. Plant., 70, 342-348.Google Scholar
  158. Swensen, S. M. (1996). The evolution of actinorhizal symbioses: Evidence for multiple origins of the symbiotic association. Am. J. Bot., 83, 1503-1512.Google Scholar
  159. Thompson, V. (1994). Spittlebug indicators of nitrogen-fixing plants. Ecol. Entomol., 19, 391-398.Google Scholar
  160. Thompson, V. (1999). Spittlebugs associated with actinorhizal host plants. Can. J. Bot., 77, 1387-1390.Google Scholar
  161. Tilman, D., Wedin, D., and Knops, J. (1996). Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379, 718.Google Scholar
  162. Tjepkema, J. (1978). The role of oxygen diffusion from the shoots and nodule roots in nitrogen fixation by root nodules of Myrica gale. Can. J. Bot., 56, 1365-1371.Google Scholar
  163. Torrey, J. G. (1990). Cross-inoculation groups within Frankia and host-endosymbiont associations. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia and actinorhizal plants (pp. 83-106). New York, NY: Academic Press.Google Scholar
  164. Tortosa, R. D., and Cusato, M. (1991). Effective nodulation of rhamnaceous actinorhizal plants induced by air dry soils. Plant Soil, 131, 229-233.Google Scholar
  165. van Dijk, C. (1979). Endophyte distribution in the soil. In J. C. Gordon, C. T. Wheeler, and D. A. Perry (Eds.), Symbiotic nitrogen fixation in the management of temperate forests (pp. 84-94). Corvalis, OR: Oregon State University Press.Google Scholar
  166. van Dijk, C., and Sluimer-Stolk, A. (1990). An ineffective strain type of Frankia in the soil of natural stands of Alnus glutinosa (L.) Gaertn. Plant Soil, 127, 107-121.Google Scholar
  167. Van Ghelue, M., Lovaas, E., Ringo, E., and Solheim, B. (1997). Early interactions between Alnus glutinosa and Frankia strain ArI3: Production and specificity of root hair deformation factor(s). Physiol. Plant., 99, 579-587.Google Scholar
  168. Van Miegroet, H., and Cole, D. W. (1985). Acidification sources in red alder and Douglas-fir soils: Importance of nitrification. Soil Sci. Soc. Am. J., 49, 1274- 1279.Google Scholar
  169. Vergnaud, L., Chaboud, A., Prin, Y., and Rougier, M. (1985). Preinfection events in the establishment of Alnus-Frankia symbiosis: Development of a spot inoculation technique. Plant Soil, 87, 67-68.Google Scholar
  170. Vitousek, P. M., Cassman, K., Cleveland, C., Crews, T., Field, C. B., et al. (2002). Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry, 57/58, 1-45.Google Scholar
  171. Vitousek, P. M., and Walker, L. R. (1989). Biological invasion by Myrica faya in Hawaii: Plant demography, nitrogen fixation, and ecosystem effects. Ecol. Monogr., 59, 247-265.Google Scholar
  172. Vogel, C. S., and Curtis, P. S. (1995). Leaf gas and nitrogen dynamics of N2-fixing field-grown Alnus glutinosa under elevated atmospheric CO2. Glob. Change Biol., 1, 55-61.Google Scholar
  173. Vogel, C., and Dawson, J. O. (1986). In vitro growth of five Frankia isolates in the presence of four phenolic acids. Soil Biol. Biochem., 18, 227-231.Google Scholar
  174. Walker, L. R. (1993). Nitrogen fixers and species replacements in primary succession. In J. Miles and D. W. H. Walton (Eds.), Primary succession on land (pp. 249-272). London, UK: Blackwell Scientific.Google Scholar
  175. Wheeler, C. T., and Bowes, B. G. (1974). Effects of light and darkness on nitrogen fixation by root nodules of Alnus glutinosa in relation to their cytology. Z. Pflanzenphysiol., 71, 71-75.Google Scholar
  176. Wheeler, C. T., Henson, I. E., and McLaughlin, M. E. (1979). Hormones in plants bearing actinomycete nodules. Bot. Gaz. (Chicago), Suppl., 140, S52-S57.Google Scholar
  177. Wheeler, C. T., Hughes, L. T., Oldroyd, J., and Pulford, I. D. (2001). Effects of nickel on Frankia and its symbiosis with Alnus glutinosa (L) Gaertn. Plant Soil, 231, 81-90.Google Scholar
  178. Wheeler, C. T., and Miller, I. M. (1990). Current and potential uses of actinorhizal plants in Europe. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia andactinorhizal plants (pp. 365-389). New York, NY: Academic Press.Google Scholar
  179. Wheeler, C. T., Watts, S. H., and Hillman, J. R. (1983). Changes in carbohydrates and nitrogenase compounds in the root nodules of Alnus glutinosa in relation to dormancy. New Phytol., 95, 209-218.Google Scholar
  180. Whitehead, D. (1964). Identification of p-hydroxybenzoic, vanillic, p-coumaric, and ferulic acid in soils. Nature, 202, 417-419.PubMedGoogle Scholar
  181. Whitehead, D., Dibb, H., and Hartley, R. (1983). Bound phenolic compounds in water extracts of soils, plant roots and leaf litter. Soil Biol. Biochem., 15, 133-136.Google Scholar
  182. Wollum, C. T., and Youngberg, A. G. (1969). Effect of soil temperatures on nodulation of Ceanothus velutinus Dougl. Proc. Soil Sci. Soc. of America, 33, 801-803.Google Scholar
  183. Wollum, C. T., Youngberg, A. G., and Chichester, F. W. (1968). Relation of previous timber stand age to nodulation of Ceanothus velutinus. Forest Sci., 14, 114-118.Google Scholar
  184. Wolters, D. J., Akkermans, A. D. L., and Van Dijk, C. (1997). Ineffective Frankia strains in wet stands of Alnus glutinosa L. Gaertn. in the Netherlands. Soil Biol. Biochem., 29, 1702-1712.Google Scholar
  185. Yadav, J. S. P. (1983). Soil limitations for successful establishment and growth of Casuarina plantations. In S. J. Midgley, J. W. Turnbull, and R. D. Johnston (Eds.), Casuarina ecology, managementandutilization (pp. 138-157). Melbourne, Austrralia: CSIRO.Google Scholar
  186. Yamanaka, T., Li, C.-Y., Bormann, B. T., and Okabe, H. (2003). Tripartite associations in alder: Effects of Frankia and Alpova diplophloeus on the growth, nitrogen fixation and mineral acquisition of Alnus tenuifolia. Plant Soil, 254, 179-186.Google Scholar
  187. Young, D. R., Sande, E., and Perters, G. A. (1992). Spatial relationships of Frankia and Myrica cerifera on a Virginia, U.S.A., barrier island. Symbiosis, 112, 209-220.Google Scholar
  188. Zhang, X., and Benson, D. R. (1992). Utilization of amino acids by Frankia strain CpI1. Arch. Microbiol., 158, 256-261.Google Scholar
  189. Zimpfer, J. F., Kaelke, C. M., Smyth, C. A., Hahn, D., and Dawson, J. O. (2003). Frankiainoculation, soil biota, and host tissue amendment influence Casuarina nodulation capacity of a tropical soil. Plant Soil, 254, 1-10.Google Scholar
  190. Zimpfer, J. F., Kennedy, G. J., Smyth, C. A., Hamelin, J., Navarro, E., and Dawson, J. O. (1999). Localization of Casuarina-infective Frankia near Casuarina cunninghamiana trees in Jamaica. Can. J. Bot., 77, 1248-1256.Google Scholar
  191. Zimpfer, J. F., McCarty, B., Kaelke, C. M., Mulongwe, L., Igual, J. M., Smyth, C. A., and Dawson, J. O. (2002). Casuarina cunninghamiana cladode extracts increase the Frankia infectious capacity of a tropical soil. Symbiosis, 33, 73-90.Google Scholar
  192. Zimpfer, J. F., Smyth, C. A., and Dawson, J. O. (1997). The capacity of Jamaican mine spoils, agricultural and forest soils to nodulate Myrica cerifera, Leucaena leucocephala and Casuarina cunninghamiana. Physiol. Plant., 99, 664-672.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • J. O. Dawson
    • 1
  1. 1.Departments of Natural Resources and Environmental Sciences and Plant BiologyUniversity of IllinoisUrbanaUSA

Personalised recommendations