Advertisement

Keywords

Arbuscular Mycorrhizal Fungus Ectomycorrhizal Fungus Frankia Strain Nodulation Capacity Actinorhizal Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agerer, R. (2001). Exploration types of ectomycorrhizae. A proposal to classify ectomycorrhizal mycelial stems according to their patterns of differentiation and putative ecological importance. Mycorrhiza, 11, 107-114.Google Scholar
  2. Arahou, M., Diem, H. G., and Sasson, A. (1998). Influence of iron depletion on growth and production of catechol siderophores by different Frankiastrains. W. J. Microbiol. Biotechnol., 14, 31-36.Google Scholar
  3. Aronson, D. B., and Boyer, G. L. (1992). Frankiaproduces a hydroxamate siderophore under iron limitation. J. Plant Nutrition, 15, 2993-2201.Google Scholar
  4. Arveby, A. S., and Huss-Danell, K. (1988). Presence and dispersal of infective Frankia in peat and meadow soils in Sweden. Biol. Fert. Soils, 6, 39-44.Google Scholar
  5. Baker, D. D. (1987). Relationship among pure-cultured strains of Frankia based on host specificity. Physiol. Plant., 70,245-248.Google Scholar
  6. Barron, G. L. (1968). The genera of Hypomycetes from soil. Baltimore, MD: Williams and Wilkins.Google Scholar
  7. Benoit, L. F., and Berry, A. M. (1990). Methods for production and use of actinorhizal plants in forestry, low maintenance landscapes, and revegetation. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankiaand actinorhizal plants (pp. 281-194). New York, NY: Academic Press.Google Scholar
  8. Berg, R. H., Liu, L., Dawson, J. O., Savka, M. A., and Farrand, S. K. (1992). Induction of pseudoactinorhizae by the plant pathogen Agrobacterium rhizogenes. Plant Physiol., 98,777-779PubMedGoogle Scholar
  9. Bond, G. (1963). The root nodules of non-legume angiosperms. In P. S. Nutman and B. Mosse (Eds.), Symbiotic associations (pp. 72-91). London, UK: Cambridge University Press.Google Scholar
  10. Bosco, M., Fernandez, M. P., Simonet, P., Materassi, R., and Normand, P. (1992). Evidence that some Frankiasp strains are able to cross boundaries between Alnusand Elaeagnus host specificity groups. Appl. Environ. Microbiol., 58,1569-1576.PubMedGoogle Scholar
  11. Buresti, E., Domenach, A.-M., Bosco, M., and Moiroud, A. (1991). Comparison between Quercus robur/Alnus cordatamixed plantations and Quercus robur in monoculture. In M. Polsinelli, R. Materassi and M. Vicenzini (Eds.), Nitrogen fixation with non-legumes (pp. 651-662). Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
  12. Burggraaf, A. J. P., and Shipton, W. A. (1983). Studies on the growth ofFrankia isolates in relation to infectivity and nitrogen fixation (acetylene reduction). Can. J. Bot., 61, 2774-2782.Google Scholar
  13. Burleigh, S. H., and Torrey, J. G. (1990). Effectiveness of different Frankiacell types as inocula for the actinorhizal plant Casuarina. Appl. Environ. Microbiol., 56, 2565-2567.PubMedGoogle Scholar
  14. Burleigh, S. H., and Dawson, J. O. (1994). Occurrence of Myrica-nodulating Frankiain Hawaiian volcanic soils. Plant Soil, 164, 283-289.Google Scholar
  15. Capellano, A., Dequatre, B., Valla, G., and Moiroud, A. (1987). Root-nodule formation by Penicilliumsp. on Alnus glutinosa and Alnus incana. Plant Soil, 104, 45-51.Google Scholar
  16. Carrasco, A., and Carú, M. (1995). Efecto de NaCl sobre el crecimiento y actividad de nitrogenasa de cepas de Frankia aisladas de Ramnaceas. Acta Microbiológica, 6,153-161.Google Scholar
  17. Carú, M., and Cabello, A. (1998). Isolation and characterization of the symbiotic phenotype of antibiotic-resistant mutants of Frankia from Rhamnaceae. W. J. Microbiol. Biotechnol., 14, 205-210.Google Scholar
  18. Carú, M., and Cabello, A. (1999). Infectivity and effectivity of some Frankiastrains from the Rhamnaceae family. Arid Soil Res., 13, 53-59.Google Scholar
  19. Cérémonie, H., Debellé, F., and Fernandez, M. P. (1999). Structural and functional comparison of Frankia root hair deforming factor and rhizobia Nod factor. Can. J. Bot., 77, 1293-1301.Google Scholar
  20. Clawson, M. L., and Benson, D. R. (1999). Natural diversity of Frankia in actinorhizal root nodules from promiscuous hosts in the Myricaceae. Appl. Environ. Microbiol., 65,4521-4527.PubMedGoogle Scholar
  21. Crocker, L. J., and Schwintzer, C. R. (1994). Soil conditions affect the occurrence of cluster roots in Myrica gale L. in the field. Soil Biol. Biochem., 26, 615-622.Google Scholar
  22. Cruz-Cisneros, R., and Valdés, M. (1990). Ecological aspects of the actinorhizal plants growing in the basin of Mexico. Nitrogen Fixing Tree Res. Rep., 8,42-47.Google Scholar
  23. Chatarpaul, L., Chakravarty, P., and Subramaniam, P. (1989). Studies on tetrapartite symbiosis. 1. Role of ecto- and endomycorrhizal fungi and Frankia on the growth performance of Alnus incana. Plant Soil, 118, 145-150.Google Scholar
  24. Dawson, J. O. (1986). Actinorhizal plants: Their use in forestry and agriculture. Outlook Agric., 15, 202-208.Google Scholar
  25. Dawson, J. O., Kowalski, D. G., and Dart, P. J. (1989). Variation with soil depth, topographic position and host species in the capacity of soils from an Australian locale to nodulate Casuarinaand Allocasuarina seedlings. Plant Soil, 118, 1-13.Google Scholar
  26. Diem, H. G. (1996). Les mycorrhizes des plantes actinorrhizienes. Acta Bot. Gall., 143,581-592.Google Scholar
  27. Diem, H. G., and Dommergues, Y. R. (1990). Current and potential uses and management of Casuarinaceae in the tropics and subtropics. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankiaand actinorhizal plants(pp. 316-342). New York, NY: Academic Press.Google Scholar
  28. Dobritsa, S. V. (1998). Grouping ofFrankia strains on the basis of susceptibility to antibiotics, pigment production and host specificity. Int. J. Syst. Bacteriol., 48, 1265-1275.Google Scholar
  29. Dommergues, Y., Duhoux, E., and Diem, H. G. (1999). Les arbres fixateurs d’azote.Montpellier, France: Editions Espaces 34.Google Scholar
  30. Dommergues, Y. R., and Bosco, M. 2000. The contribution of N2-fixing trees to soil productivity and rehabilitation in tropical, subtropical and Mediterranean regions. In N. S. Subba Rao and Y. R. Dommergues (Eds.), Microbial interactions in agriculture and forestry (pp. 65-96). Plymouth, UK: Science Publishers, Inc.Google Scholar
  31. Duhoux, E., Rinaudo, G., Diem, H. G., Auguy, F., Fernandez, D., et al. (2001). Angiosperm Gymnostoma trees produce root nodules colonized by arbuscular mycorrhizal fungi related to Glomus. New Phytol., 149,115-125.Google Scholar
  32. Ellis, B. A., and Kummerow, J. (1988). N2(C2H2-C2H4) fixation in two species of Ceanothusseedlings in second year postfire chaparral. Plant Soil, 109,207-213.Google Scholar
  33. Faure-Raynaud, M., Bonnefoy-Poirier, M. A., and Moiroud, A. (1986). Influence de pH acides sur la viabilité d’isolats de Frankia.Plant Soil, 96,347-358.Google Scholar
  34. Fessenden, R. J. (1979). Use of actinorhizal plants for land reclamation and amenity planting in the USA and Canada. In J. C. Gordon, C. T. Wheeler and D. A. Perry (Eds.), Symbiotic nitrogen fixation in the management of temperate forests (pp. 403-419). Corvallis, OR: Oregon State University Press.Google Scholar
  35. Fraga-Beddiar, A., and Le Tacon, F. (1990). Interactions between a VA mycorrhizal fungus and Frankia associated with alder (Anus glutinosa (L.) Gaertn.). Symbiosis, 9, 247-257.Google Scholar
  36. Frioni, L., Soinelli, A., and Maggi, A. (1991). Nodulación y fijación de nitrógeno en especies de Casuarina y Allocasuarinacultivadas en el país. Boletín de Investigación 30,Universidad de la República, Montevideo, Uruguay.Google Scholar
  37. Frioni, L., Le Roux, C., Dommergues, Y. R., and Diem H. G. (1994). Inoculant made of encapsulated Frankia: Assessment of Frankia growth within alginate beads. W. J. Microbiol. Biotechnol. 10, 118-121.Google Scholar
  38. Galicia, M. C., and Valdés, M. (1997). Interaction between actinorhizal and mycorrhizal associations on Alnus acuminatassp. glabrata. Ciencia Forestal México, 22, 3-14.Google Scholar
  39. Gauthier, D., Diem, H. G., and Dommergues, Y. R. (1981). Infectivité et effectivité des souches de Frankia isolées de nodules de Casuarina equisetifoliaet d’Hippophaë rhamnoides. C. R. Acad. Sci. Paris Série III, 293,489-491.Google Scholar
  40. Gauthier, D., Jaffré, T., and Prin, Y. (2000). Abundance of Frankia from Gymnostomaspp. in the rhizosphere of Alphitonia neocaledonica,a non-nodulated Rhamnaceaeendemic to New Caledonia. Eur. J. Soil Biol., 36, 169-175.Google Scholar
  41. Godbout, C., and Fortin, J. A. (1983). Morphological features of synthesized ectomycorrhizae of Alnus crispa and A. rugosa. New Phytol., 94, 249-262.Google Scholar
  42. Haansuu, J. P., Klika, K., Söderholm, P., Ovcharenko, V., Pihlaja, K., et al. (2001). Isolation and biological activity of frankiamide. J. Ind. Microbiol. Biotechnol., 27, 62-66.PubMedGoogle Scholar
  43. Hafeez, F. Y., Hameed, S., and Malik, K. A. (1999). FrankiaandRhizobium strains as inoculum for growing trees in a saline environment. Pakistan J. Bot., 31,173-182.Google Scholar
  44. Huguet, V., Batzli, J. M., Zimpfer, J. F., Normand, P., Dawson, J. O., and Fernandez, M. P. (2001). Diversity and specificity of Frankiastrains in nodules of sympatric Myrica gale, Alnus incanaand Shepherdia canadensisdetermined by rrs gene polymorphism. Appl. Environ. Microbiol., 67, 2116-2122.PubMedGoogle Scholar
  45. Huss-Danell, K. (1990). The physiology of actinorhizal nodules. In C. R. Schwintzer, and J. D. Tjepkema (Eds.), The biology ofFrankiaand actinorhizal plants (pp. 129-156). New York: Academic Press.Google Scholar
  46. Huss-Danell, K. (1997). Actinorhizal symbioses and their N2 fixation. Tansley Review No. 93. New Phytol., 136, 375-405.Google Scholar
  47. Huss-Danell, K., and Frej, A. (1986). Distribution of Frankia strains in forest and afforestation sites in Northern Sweden. Plant Soil, 90, 407-418.Google Scholar
  48. Huss-Danell, K., Sverrisson, H., Hahlin, A-S., and Danell, K. (1999). Occurrence of Alnus-infective Frankia and Trifolium-infective Rhizobium in circumpolar soils. Arctic Antarctic Alpine Res., 31, 400-406.Google Scholar
  49. Igual, J. M., and Dawson, J. O. (1999). Stimulatory effects of aluminum on in vitro growth of Frankia. Can. J. Bot. 77,1321-1326.Google Scholar
  50. Isopi, R., Lumini, E., Frattegiani, M, Puppi, G., Bosco, M., et al. (1994). Inoculation of Alnus cordata with selected microsymbionts: Effects of Frankia and Glomus spp. on seedling growth and development.Symbiosis, 17, 237-245.Google Scholar
  51. Jamann, S., Fernandez, M. P., and Moiroud, A. (1992). Genetic diversity of Elaeagnaceae-infective Frankiastrains isolated from various soils. Acta Oecol., 13,395-405.Google Scholar
  52. Jeong, S. C., and Myrold, D. D. (2001). Population size and diversity of Frankiain soils of Ceanothus velutinus and Douglas-fir stands. Soil Biol. Biochem., 33, 931-941.Google Scholar
  53. Kohls, S. J., and Baker, D. D. (1989). Effects of substrate nitrate concentration on symbiotic nodule formation in actinorhizal plants. Plant Soil, 118, 171-179.Google Scholar
  54. Kohls, S. J., Baker, D. D., Kremer, D. A., and Dawson, J. O. (1999). Water-retentive polymers increase nodulation of actinorhizal plants inoculated with Frankia. Plant Soil, 214, 105-115.Google Scholar
  55. Kummerow, J. A., Neel, J. V., and Fishbeck, K. (1978). Symbiotic nitrogen fixation in Ceanothus roots. Am. J. Bot., 65,63-69.Google Scholar
  56. Kurdali, F., and Domenach, A. M. (1991). Evaluation of nodulation capacity in Alnus glutinosa seedlings grown in soil sampled from various depths. Acta Oecol., 12, 397-401.Google Scholar
  57. Lawrence, D. B., Schoenike, A., Quispel, A., and Bond, G. (1967). The role of Dryas drummondiiin vegetation development following ice recession at Glacier Bay, Alaska, with special reference to its nitrogen fixation by root nodules. J. Ecol., 55, 793-813.Google Scholar
  58. Lumini, E., Bosco, M., Puppi, G., Isopi, R., Grattegiani, M., et al. (1994). Field performance of Alnus cordata Loisel (Italian alder) inoculated with Frankia and VA-mycorrhizal strains in mine-spoil afforestation plots. Soil Biol. Biochem., 26, 659-661.Google Scholar
  59. Maier, R. J., and Triplett, E. W. (1996). Toward more productive, efficient, and competitive nitrogen-fixing symbiotic bacteria. CRC Crit. Rev. Plant Sci., 15,191-234.Google Scholar
  60. Mattsson, U., and Sellstedt, A. (2002). Nickel affects activity more than expression of hydrogenase protein in Frankia. Curr. Microbiol., 44, 83-93.Google Scholar
  61. Maunuksela, L., Zepp, K., Koivula, T., Zeyer, J., Haahtela, K., and Hahn, D. (1999). Analysis of Frankiapopulations in three soils devoid of actinorhizal plants. FEMS Microbiol. Ecol., 28, 11-21.Google Scholar
  62. Miller, S. L., Coo, C. D., and Molina, R. (1992). Early colonization or red alder and Douglas fir by ectomycorrhizal fungi and Frankiain soils from the Oregon coast range. Mycorrhiza, 2, 53-61.Google Scholar
  63. Myrold, D. D., and Huss-Danell, K. (1994). Population dynamic of Alnus-infective Frankia in a forest soil with and without host tree. Soil. Biol. Biochem., 26, 533-540.Google Scholar
  64. Myrold, D. D., Hilger, A. B., Huss-Danell, K., and Martin, J. K. (1994). Use of molecular methods to enumerate Frankia in soil. In K. Ritz, J. Dighton, and K. E. Giller (Eds.), Beyond the biomass (pp. 127-136). Chichester, UK: John Wiley and Sons.Google Scholar
  65. Nalin, R., Normand, P., and Domenach, A-M. (1997). Distribution and N2-fixing activity of Frankiastrains in relation to soil depth. Physiol. Plant., 99,732-738.Google Scholar
  66. National Research Council (1984). Casuarinas: Nitrogen-fixing trees for adverse sites. Washington, D.C.: National Academy Press.Google Scholar
  67. Navarro E., Nalin, R., Gauthier D., and Normand, P. (1997). The nodular microsymbionts of Gymnostomaspp. are Elaeagnus-infective Frankia strains. Appl. Environ. Microbiol., 63,1610-1616.PubMedGoogle Scholar
  68. Nickel, A., Pelz, O., Hahn, D., Saurer, M., Siegwolf, R., and Zeyer, J. (2001). Effect of inoculation and leaf litter amendment on establishment of nodule-forming Frankia populations in soil. Appl. Environ. Microbiol., 6, 2603-2609.Google Scholar
  69. Oremus, P. A. (1980). Occurrence and infective potential of the endophyte of Hippophae rhamnoides L. ssp. rhamnoidesin coastal sand-dune areas. Plant Soil, 56, 123-139.Google Scholar
  70. Paschke, M. W., and Dawson, J. O. (1992). The occurrence of Frankiain tropical forest soils of Costa Rica. Plant Soil, 142, 63-67.Google Scholar
  71. Paschke, M. W., and Dawson, J. O. (1993). Avian dispersal of Frankia. Can. J. Bot., 71, 1128-1131.Google Scholar
  72. Pratt, S. D., Konopka, A. S., Murry, M. A., Ewers, F. W., and Davis, S. D. (1997). Influence of soil moisture on the nodulation of post fire seedlings of Ceanothusspp. growing in the Santa Monica Mountains of Southern California. Physiol. Plant., 99, 673- 679.Google Scholar
  73. Prin, Y., Duhoux, E., Diem., H. G., Roederer, Y., and Dommergues, Y. R. (1991). Aerial nodules in Casuarina cunninghamiana. Appl. Environ. Microbiol., 57, 871-874.PubMedGoogle Scholar
  74. Provorov, N. A., Borisov, A. Y., and Tikhonovich, I. A. (2002). Developmental genetics and evolution of symbiotic structures in nitrogen-fixing nodules and arbuscular mycorrhiza. J. Theor. Biol. 214, 215-232.PubMedGoogle Scholar
  75. Read, D. J. (1998). Mycorrhiza. The state of the art. In Varma A. and Hock, B. (Eds.), Mycorrhiza(pp. 3-34). Berlin, Germany: Springer-Verlag.Google Scholar
  76. Reddell, P., Bowen, G. D., and Robson, A. D. (1986). Nodulation of Casuarinaceae in relation to host species and soil properties. Aust. J. Bot., 34,435-444.Google Scholar
  77. Reddell, P., Rosbrook, P. A., Bowen, G. D. and Gwaze, D. (1988). Growth responses in Casuarina cunninghamiana plantings to inoculation with Frankia. Plant Soil, 108, 79-86.Google Scholar
  78. Richards, J. W., Krumholz, G. D., Chval, M. S., and Tisa, L. S. (2002). Heavy metal resistance patterns of Frankia strains.Appl. Environ. Microbiol., 68, 923-927.PubMedGoogle Scholar
  79. Righetti, T. L., Chard, C. H., and Backhause, R. A. (1986). Soil and environmental factors related to nodulation in Cowaniaand Purshia. Plant Soil, 91, 147-160.Google Scholar
  80. Rodriguez-Barrueco, C. (1968). The occurrence of the root nodule endophyte of Alnus glutinosa and Myrica galein soils. J. Gen. Microbiol., 52, 189-194.Google Scholar
  81. Rojas, N. S., Perry, D. A., Li, C. Y., and Ganio, M. L. (2002). Interactions among soil biology, nutrition, and performance of actinorhizal plant species in the H.J. Andrews Experimental Forest in Oregon. Appl. Soil Ecol., 19, 13-26.Google Scholar
  82. Rose, S. L. (1980). Mycorrhizal associations of some actinomycete nodulated nitrogen-fixing plants. Can. J. Bot., 58, 1449-1454.Google Scholar
  83. Ronkko, R., Smolander, A., Nurmiaho-Lassila, E. L., and Haahtela, K. (1993). Frankiain the rhizosphere of nonhost plants: A comparison with root-associated nitrogen-fixing Enterobacter, Klebsiellaand Pseudomonas. Plant Soil, 153, 85-95.Google Scholar
  84. Sanginga, N., Danso, S. A. A., and Bowen, G. D. (1989). Nodulation and growth response of Allocasuarinaand Casuarinaspecies to phosphorous fertilization. Plant Soil, 118, 125-132.Google Scholar
  85. Sellstedt, A., and Smith, G. D. (1990). Nickel is essential for active hydrogenase in free-living Frankia isolated from Casuarina. FEMS Microbiol. Lett., 70, 137-140.Google Scholar
  86. Sellstedt, A. (1995). Specificity and effectivity in nodulation by Frankia on southern hemisphere actinorhiza. FEMS Microbiol. Lett., 125,231-236.PubMedGoogle Scholar
  87. Sempavalan, J., Wheeler, C. T., and Hooker, J. E. (1995). Lack of competition between Frankia and Glomus for infection and colonization of roots of Casuarina equisetifolia(L.). New Phytol., 130, 429-436.Google Scholar
  88. Sequerra, J., Capellano, A., Faure-Raynard, M., Moiround, A. (1994). Root hair infection process and myconodule formation on Alnus incana by Penicillium nodositatum. Can. J. Bot., 72,955-962.Google Scholar
  89. Sheppard, L. J., Hooker, J. E., Wheeler, C. T., and Smith, R. I. (1988) Glasshouse evaluation of the growth of Alnus rubra and Alnus glutinosa on peat and acid brown earth soils when inoculated with four sources of Frankia. Plant Soil, 110,187-198.Google Scholar
  90. Smith, S. E., and Read D. J. (1997). Mycorrhizal symbiosis. London, UK: Academic Press.Google Scholar
  91. Smolander, A., and Sundman, V. (1987). Frankiain acid soils of forest devoid of actinorhizal plants. Physiol. Plant., 70, 297-303.Google Scholar
  92. Smolander, A., Nurmiaho-Lassila, E. L., and Sundman, V. (1988). Effect of a clay mineral (montmorillonite) on the nodulation of Alnusand on the nitrogenase activity of Frankia in pure culture. Symbiosis, 6, 37-52.Google Scholar
  93. Smolander, A. (1990). Frankiapopulations in soil under different tree species with special emphasis on soil under Betula pendula. Plant Soil, 121, 1-10Google Scholar
  94. Smolander, A., Ronkko, R., Nurmiaho-Lassila, E. L., and Haahtela, K. (1990). Growth of Frankia in the rhizosphere of Betula pendulata, a nonhost tree species. Can. J. Microbiol., 36,649-656.Google Scholar
  95. Theodoru, C., and Reddell, P. (1991). In vitro synthesis of ectomycorrhizas on Casuarinaceae with a range of ectomycorrhizal fungi. New Phytol., 118, 279-288.Google Scholar
  96. Thoen, D., Sougoufara, B., and Dommergues, Y. R. (1990). In vitro mycorrhization of Casuarina and Allocasuarina species by Pisolithusisolates. Can. J. Bot., 68, 2537-2542.Google Scholar
  97. Tisa, L. S., Chval, M. S., Krumholz, G. D., and Richards, J. (2000). Antibiotic resistance patterns of Frankia strains. Can. J. Bot., 77,1257-1260.Google Scholar
  98. Tortosa, R. D., and Cusato, M. (1991). Effective nodulation of rhamnaceous actinorhizal plants induced by air dry soils. Plant Soil, 131, 229-233.Google Scholar
  99. Trappe, J. M. (1979). Mycorrhiza-nodule-host interrelationships in symbiotic nitrogen-fixation: A quest in need of questions. In J. C. Gordon, C. T. Wheeler and D. A. Perry (Eds.), Symbiotic nitrogen fixation in the management of temperature forests (pp. 84-94). Corvallis, OR: Oregon State University Press.Google Scholar
  100. Valdés, M., and Cruz-Cisneros, R. (1996). Root and stem nodulation of Casuarina in Mexico. Forest Farm Com. Tree Res. Rep., I, 61-65.Google Scholar
  101. Valdés, M., and Sánchez Francia, D. (1996). Response of Alnus andCasuarina to endomycorrhizal inoculation. Rev. Mex. Mic., 12,65-77.Google Scholar
  102. Valdés, M., and Galicia, M. C. (1997). Interaction between actinorhizal and mycorrhizal associations on Alnus accuminatassp.glabrata. Cienc. For. Mex., 22, 3-14.Google Scholar
  103. Valdés, M., Pérez, N. O., and Vásquez, L. (2001). La bacteria filamentosa Frankia.In E. Martínez-Romero and J. Martínez-Romero (Eds.), Microbios en línea (pp. 237-257). UNAM, Mexico: DGSCA Press.Google Scholar
  104. Valdés, M., Cayetano, A., Leyva, M. A., and Camacho, A. D. (2004). Promoción del crecimiento de Casuarina equisetifolia(L.) por diferentes microorganismos simbiontes. Terra, 22, 207-215.Google Scholar
  105. Vásquez, L., Pérez, N-O., and Valdés, M. (2000). Isolation and symbiotic characteristics of Mexican Frankiastrains associated with Casuarina. Appl. Soil Ecol., 14,249-255.Google Scholar
  106. Vásquez, L., Cruz-Cisneros, R., and Valdés, M. (2000). Presencia de nódulos fijadores de nitrógeno en raíces de Casuarinaspp. en México. Cienc. For. Mex., 25,93-102.Google Scholar
  107. van Dijk, C. (1979). Endophyte distribution in the soil. In J. C. Gordon, C. T. Wheeler and D. A. Perry (Eds.), Symbiotic nitrogen fixation in the management of temperature forests (pp. 84-94). Corvallis, OR: Oregon State University Press.Google Scholar
  108. Visser, S., Danielson, R. M., and Parkinson, D. (1990). Field performance of Elaeagnus communata and Shepherdia canadensis(Elaeagnaceae) inoculated with soil containing Frankia and vesicular-arbuscular mycorrhizal fungi. Can. J. Bot., 69, 1321-1328.Google Scholar
  109. Wall, L. G., Hellsten, A., and Huss-Danell, K. (2000). Nitrogen, phosphorus, and the ratio between them affect nodulation in Alnus incanaand Trifolium pratense. Symbiosis, 29,91-105.Google Scholar
  110. Wolters, D. J., Van Dijk, C., Zoetendal, E. G., and Akkermans, A. D. L. (1997). Phylogenetic characterization of inffective Frankia in Alnus glutinosa (L). Gaertn. nodules from wetland soil inoculants. Mol. Ecol., 6,971-981.PubMedGoogle Scholar
  111. Wolters, D. J., van Dijk, C., Akkermans, A., and Woldendorp, J. W. (1999). Ineffective Frankiaand host resistance in natural populations of Alnus glutinosa(L.) Gaertn. Acta Oecol., 20, 71-79.Google Scholar
  112. Young, D. R., Sande, E., and Peters, G. A. (1992). Spatial relationships of Frankia and Myrica ceriferaon a Virginia, USA, barrier island. Symbiosis, 12, 209-220.Google Scholar
  113. Zhang-Zhongze, Z., Chenggang, Z., Xingyuan, H., and Yuying, W. (2000). Effect of inoculation on the Frankia-Hipphophaë symbiosis and influence of Hippophaë on Populusgrowth in mixed plantations. In N. S. Subba Rao and Y. R. Dommergues (Eds.), Microbial interactions in agriculture and forestry (pp.155-162). Plymouth, UK: Science Publishers Inc.Google Scholar
  114. Zimpfer, J. F., Smyth, C. A., and Dawson, J. O. (1997). The capacity of Jamaican mine spoils, agricultural and forest soils to nodulate Myrica cerifera, Leucaena leucocephala and Casuarina cunninghamiana. Physiol.Plant., 99, 664-672.Google Scholar
  115. Zimpfer, J. F., Kennedy, G. J., Smyth, C. A., and Dawson, J. O. (1999). Localization of Casuarinainfective Frankia near Casuarina equisetifoliatrees in Jamaica. Can. J. Bot., 77, 1248-1256.Google Scholar
  116. Zitzer, S. F., and Dawson, J. O. (1992). Soil properties and actinorhizal vegetation influence nodulation of Alnus glutinosaand Elaeagnus angustifoliaby Frankia. Plant Soil, 140, 197-204.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • M. Valdés
    • 1
  1. 1.Departamento de MicrobiologiaInstituto Politéico Nacional Escuela de Ciencias Biológicas11340 MxéxicoMexico

Personalised recommendations