FROM SOLITON EQUATIONS TO THEIR ZERO CURVATURE FORMULATION

  • F. Lambert
  • J. Springael
Conference paper
Part of the NATO Science Series book series (NAII, volume 201)

Abstract

A key property of classical (continuous) soliton systems is the fact that they correspond to nonlinear partial differential equations (NLPDE’s) which happen to be expressible as the integrability condition for a system of linear equations. Linear eigenvalue problems and associated t-evolutions have produced classes of soliton equations [1, 2] and have led to the disclosure of major integrability features (such as the existence of multisoliton solutions and infinite sequences of conserved quantities).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lax, P. D. (1968) Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21, pp. 467–490.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ablowitz, M. J., Kaup, D. J., Newell, A. C., and Segur, H. (1974) Stud. Appl. Math. L III, pp. 249–315.MathSciNetGoogle Scholar
  3. 3.
    Hietarinta, J. and Kruskal, M. D. (1992) Hirota forms for the six Painlevé equations from singularity analysis, in: Painlevé Transcendents—Their Asymptotics and Physical Applications, eds. D. Levi and P. Winternitz, Plenum Press, New York, pp. 175–186.Google Scholar
  4. 4.
    Hirota, R. (1974) A new form of Bäcklund transformations and its relation to the inverse scattering problem, Prog. Theor. Phys. 52, pp. 498–512.CrossRefGoogle Scholar
  5. 5.
    Satsuma, J. and Kaup, D. J. (1977) A Bäcklund transformation for a higher order KdV equation, J. Phys. Soc. Jpn. 43, pp. 692–697.CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Hirota, R. (1976) Direct method of finding exact solutions of nonlinear evolution equations, in: Bäcklund Transformations, the Inverse Scattering Method, Solitons and their Applications, Springer Lecture Notes in Mathematics 515, ed. R.M. Miura, pp. 40–68.Google Scholar
  7. 7.
    Bell, E. T. (1934) Exponential polynomials, Ann. Math. 35, pp. 258–277.CrossRefGoogle Scholar
  8. 8.
    Faá di Bruno (1857) Note sur une nouvelle formule de calcul différentiel, Quart. J. Pure Appl. Math. 1, pp. 359–360.Google Scholar
  9. 9.
    Gilson, C., Lambert, F., Nimmo, J., and Willox, R. (1996) On the combinatorics of the Hirota D-operators, Proc. Roy. Soc. Lond. A431, pp. 361–639.Google Scholar
  10. 10.
    Lambert, F. and Springael, J. (2001) On a direct procedure for the disclosure of Lax pairs and Bäcklund transformations, Chaos, Solitons and Fractals. 12, pp. 2821–2832.MATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Jimbo, M. and Miwa, T. (1983) Solitons and infinite dimensional Lie algebras, RIMS Kyoto University. 19, pp. 943–1001.MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Lambert, F., Loris, I., and Springael, J. (2001) Classical Darboux transformations and the KP hierarchy, Inverse Probl. 17, pp. 1067–1074.MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Sawada, K. and Kotera, T. (1974) A method for finding N-soliton solutions of the KdV equation and KdV-like equations, Progr. Theor. Phys. 51, pp. 1355–1367.MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • F. Lambert
    • 1
  • J. Springael
    • 2
  1. 1.Dienst Theoretische NatuurkundeVrije Universiteit Brussel Pleinlaan 2BrusselsBelgium
  2. 2.Vakgroep M.T.T., Faculteit T.E.W.Universiteit Antwerpen Prinsstraat 13AntwerpenBelgium

Personalised recommendations