Advertisement

The Initial Mass Function: From Salpeter 1955 to 2005

  • Gilles Chabrier
Part of the Astrophysics and Space Science Library book series (ASSL, volume 327)

Abstract

Fifty years after Ed Salpeter’s seminal paper, tremendous progress both on the observational and theoretical sides allow a fairly accurate determination of the Galactic IMF not only down to the hydrogen-burning limit but into the brown dwarf domain. The present review includes the most recent observations of lowmass stars and brown dwarfs to determine this IMF and the related Galactic mass budget. The IMF definitely exhibits a similar behaviour in various environments, disk, young and globular clusters, spheroid. Small scale dissipation of large scale compressible MHD turbulence seems to be the underlying triggering mechanism for star formation. Modern simulations of compressible MHD turbulence yield an IMF consistent with the one derived from observations.

Keywords

Star Formation Globular Cluster Binary Frequency Luminosity Function Initial Mass Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, J., 1991, A&ARv, 3, 91ADSGoogle Scholar
  2. Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P., 1997, A&A, 327, 1054ADSGoogle Scholar
  3. Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P., 1998, A&A, 337, 403ADSGoogle Scholar
  4. Bruzual & Charlot 2003, MNRAS, 344, 1000CrossRefADSGoogle Scholar
  5. Burgasser, A., 2001, PhD thesisGoogle Scholar
  6. Burgasser, A., et al., 2004, ApJ, 604, 827CrossRefADSGoogle Scholar
  7. Chabrier, G., 2003a, PASP, 115, 763CrossRefADSGoogle Scholar
  8. Chabrier, G., 2003b, ApJ, 585, L133CrossRefADSGoogle Scholar
  9. Cruz, K., 2004, PhD thesisGoogle Scholar
  10. Dahn, C.C, Liebert, J., Harrington, R.S, 1986, AJ, 91, 621CrossRefADSGoogle Scholar
  11. Delfosse, X., et al., 2000, A&A, 364, 217ADSGoogle Scholar
  12. Gizis, J., et al. 2000, ApJ, 120, 1085Google Scholar
  13. Henry, T.J., & McCarthy, D.W., 1990, ApJ, 350, 334CrossRefADSGoogle Scholar
  14. Kroupa, P., 2001, MNRAS, 322, 231CrossRefADSGoogle Scholar
  15. Li, P.S.,Norman, M., Mac Low, M.-M., & Heitsch, F., 2004, ApJ, 605, 800CrossRefADSGoogle Scholar
  16. Li, Z.-Y., & Nakamura, F., 2004, ApJ, 609, L83CrossRefADSGoogle Scholar
  17. Luhman, K., et al. 2003, ApJ, 593, 1093CrossRefADSGoogle Scholar
  18. Luhman, K., 2004, ApJ, 614, 398CrossRefADSGoogle Scholar
  19. McGovern, J., et al. 2004, ApJ, 600 1020CrossRefADSGoogle Scholar
  20. Padoan, P., & Nordlund, Å, 2002, ApJ, 576, 870CrossRefADSGoogle Scholar
  21. Reid, I.N., Gizis, J.E. & Hawley, S.L., AJ, 2002, 124, 2721CrossRefADSGoogle Scholar
  22. Reid, I.N., et al., 2004, in preparationGoogle Scholar
  23. Paresce, F., & De Marchi, G., 2000, ApJ, 534, 870CrossRefADSGoogle Scholar
  24. Portinari, Sommer-Larsen & Tantalo, 2004, MNRAS, 347, 691CrossRefADSGoogle Scholar
  25. Salpeter, E.E., 1955, ApJ, 121, 161CrossRefADSGoogle Scholar
  26. Ségransan, D., et al., 2004, IAU Symposium 211, Astr. Soc. Pacific, 2003, p. 413Google Scholar
  27. Zheng, Z, Flynn, C., Gould, A., Bahcall, J.N., & Salim, S., 2001, ApJ, 555, 393CrossRefADSGoogle Scholar
  28. Zoccali, M. et al., 2000, ApJ, 530, 418CrossRefADSGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Gilles Chabrier
    • 1
  1. 1.Ecole Normale Supérieure de Lyon, CRALLyonFrance

Personalised recommendations