Certified Real-Time Solution of Parametrized Partial Differential Equations

  • Nguyen Ngoc Cuong
  • Karen Veroy
  • Anthony T. Patera

Abstract

Engineering analysis requires the prediction of (say, a single) selected “output” se relevant to ultimate component and system performance:* typical outputs include energies and forces, critical stresses or strains, flowrates or pressure drops, and various local and global measures of concentration, temperature, and flux. These outputs are functions of system parameters, or “inputs”, μ, that serve to identify a particular realization or configuration of the component or system: these inputs typically reflect geometry, properties, and boundary conditions and loads; we shall assume that μ is a P-vector (or P-tuple) of parameters in a prescribed closed input domain D ⊂ ℝp. The input-output relationship se(μ): D → ℝ thus encapsulates the behavior relevant to the desired engineering context.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B.O. Almroth, P. Stern, and F.A. Brogan, “Automatic choice of global shape functions in structural analysis,” AIAA J., 16, 525–528, 1978.CrossRefADSGoogle Scholar
  2. [2]
    A.K. Noor and J.M. Peters, “Reduced basis technique for nonlinear analysis of structures,” AIAA J., 18, 455–462, 1980.CrossRefADSGoogle Scholar
  3. [3]
    J.P. Fink, and W.C. Rheinboldt, “On the error behavior of the reduced basis technique for nonlinear finite element approximations,” Z. Angew. Math. Mech., 63, 21–28, 1983.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    T.A. Porsching, “Estimation of the error in the reduced basis method solution of nonlinear equations,” Math. Comput., 45, 487–496, 1985.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    M.D. Gunzburger, Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms, Academic Press, Boston, 1989.MATHGoogle Scholar
  6. [6]
    J.S. Peterson, “The reduced basis method for incompressible viscous flow calculations,” SIAM J. Sci. Stat. Comput., 10, 777–786, 1989.MATHCrossRefGoogle Scholar
  7. [7]
    K. Ito and S.S. Ravindran, “A reduced-order method for simulation and control of fluid flows,” Journal of Computational Physics, 143, 403–425, 1998.MATHCrossRefMathSciNetADSGoogle Scholar
  8. [8]
    L. Machiels, Y. Maday, I.B. Oliveira, A.T. Patera, and D. Rovas, “Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems,” C. R. Acad. Sci. Paris, Série I, 331, 153–158, 2000.MATHMathSciNetADSGoogle Scholar
  9. [9]
    C. Prud’homme, D. Rovas, K. Veroy, Y. Maday, A.T. Patera, and G. Turinici, “Reliable real-time solution of parametrized partial differential equations: Reducedbasis output bound methods,” J. Fluids Eng., 124, 70–80, 2002.CrossRefGoogle Scholar
  10. [10]
    Y. Maday, A.T. Patera, and G. Turinici, “Global a priori convergence theory for reduced-basis approximation of single-parameter symmetric coercive elliptic partial differential equations,” C. R. Acad. Sci. Paris, Série I, 335, 289–294, 2002.MATHMathSciNetGoogle Scholar
  11. [11]
    E. Balmes, “Parametric families of reduced finite element models: Theory and applications,” Mech. Syst. Signal Process., 10, 381–394, 1996.CrossRefADSGoogle Scholar
  12. [12]
    Y. Maday, A.T. Patera, and D.V. Rovas, “A blackbox reduced-basis output bound method for noncoercive linear problems,” In: D. Cioranescu and J. Lions (eds.), Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar Volume XIV, Elsevier Science B.V, pp. 533–569, 2002.Google Scholar
  13. [13]
    R. Becker and R. Rannacher, “Weighted a posteriori error control in finite element methods,” ENUMATH 95 Proceedings World Science Publications, Singapore, 1997.Google Scholar
  14. [14]
    M. Paraschivoiu and A.T. Patera, “A hierarchical duality approach to bounds for the outputs of partial differential equations,” Comp. Meth. Appl. Mech. Eng., 158, 389–407, 1998.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics., Wiley-Interscience, New York, 2000.Google Scholar
  16. [16]
    J.W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.MATHGoogle Scholar
  17. [17]
    K. Veroy, C. Prud’homme, and A.T. Patera, “Reduced-basis approximation of the viscous Burgers equation: Rigorous a posteriori error bounds,” C. R. Acad. Sci. Paris, Série I, 337, 619–624, 2003.MATHMathSciNetGoogle Scholar
  18. [18]
    K. Veroy, C. Prud’homme, D.V. Rovas, and A.T. Patera, “A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations (AIAA Paper 2003–3847),” Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, 2003.Google Scholar
  19. [19]
    M. Meyer and H.G. Matthies, “Efficient model reduction in non-linear dynamics using the Karhunen-Loève expansion and dual-weighted-residual methods,” Cornput. Mech., 31, 179–191, 2003.MATHCrossRefGoogle Scholar
  20. [20]
    A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, 2nd edn. Springer, 1997.Google Scholar
  21. [21]
    K. Veroy, D. Rovas, and A.T. Patera, “A posteriori error estimation for reducedbasis approximation of parametrized elliptic coercive partial differential equations: “Convex inverse” bound conditioners,” Control, Optim. Calculus Var., 8, 1007–1028, Special Volume: A tribute to J.-L. Lions, 2002.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    K. Veroy and A.T. Patera, “Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations; Rigorous reduced-basis a posteriori error bounds,” Submitted to International Journal for Numerical Methods in Fluids (Special Issue-Proceedings for 2004 ICFD Conference on Numerical Methods for Fluid Dynamics, Oxford), 2004.Google Scholar
  23. [23]
    N.C. Nguyen, Reduced-Basis Approximation and A Posteriori Error Bounds for Nonaffine and Nonlinear Partial Differential Equations: Application to Inverse Analysis, PhD Thesis, Singapore-MIT Alliance, National University of Singapore, In progress, 2005.Google Scholar
  24. [24]
    M.A. Grepl, N.C. Nguyen, K. Veroy, A.T. Patera, and G.R. Liu, “ Certified rapid solution of parametrized partial differential equations for real-time applications,” Proceedings of the 2nd Sandia Workshop of PDE-Constrained Optimization: Towards Real-Time and On-Line PDE-Constrained Optimization, SIAM Computational Science and Engineering Book Series. Submitted, 2004.Google Scholar
  25. [25]
    L. Sirovich, “Turbulence and the dynamics of coherent structures, Part 1: Coherent structures,” Q. Appl. Math., 45, 561–571, 1987.MATHMathSciNetGoogle Scholar
  26. [26]
    B. Roux (ed.), Numerical Simulation of Oscillatory Convection in Low-Pr Fluids: A GAMM Workshop, vol. 27 of Notes on Numerical Fluids Mechanics, Vieweg, 1990.Google Scholar
  27. [27]
    N. Trudinger, “On imbedding into Orlicz spaces and some applications,” J. Math. Mech., 17, 473–484, 1967.MATHMathSciNetGoogle Scholar
  28. [28]
    G. Talenti, “Best constant in Sobolev inequality,” Ann. Mat. Pura Appl., 110, 353–372, 1976.MATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    G. Rozza, “Proceedings of the Third M.I.T. Conference on Computational Fluid and Solid Mechanics,” June 14–17, 2005. In: K. Bathe (ed.), Computational Fluid and Solid Mechanics., Elsevier, Submitted, 2005.Google Scholar
  30. [30]
    G. Caloz and J. Rappaz, “Numerical analysis for nonlinear and bifurcation problems,” In: P. Ciarlet and J. Lions (eds.), Handbook of Numerical Analysis, vol. V, Techniques of Scientific Computing (Part 2), Elsevier Science B.V, pp. 487–637, 1997.Google Scholar
  31. [31]
    K. Ito and S.S. Ravindran, “A reduced basis method for control problems governed by PDEs,” In: W. Desch, F. Kappel, and K. Kunisch (eds.), Control and Estimation of Distributed Parameter Systems, Birkhäuser, pp. 153–168, 1998.Google Scholar
  32. [32]
    F. Brezzi, J. Rappaz, and P. Raviart, “Finite dimensional approximation of nonlinear problems. Part I: Branches of nonsingular solutions,” Numerische Mathematik, 36, 1–25, 1980.MATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    M. Barrault, N.C. Nguyen, Y. Maday, and A.T. Patera, “An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations,” C. R. Acad. Sci. Paris, Série I, 339, 667–672, 2004.MATHMathSciNetGoogle Scholar
  34. [34]
    D. Rovas, Reduced-Basis Output Bound Methods for Parametrized Partial Differential Equations, PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2002.Google Scholar
  35. [35]
    M.A. Grepl and A.T. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations, M2AN Math. Model. Numer. Anal., To appear, 2005.Google Scholar
  36. [36]
    Z.J. Bai, “Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems.”, Appl. Numer. Math., 43, 9–44, 2002.MATHCrossRefMathSciNetGoogle Scholar
  37. [37]
    C. Prud’homme, D.V. Rovas, K. Veroy, and A.T. Patera, “A mathematical and computational framework for reliable real-time solution of parametrized partial differential equations,” M2AN Math. Model. Numer. Anal., 36, 747–771, 2002.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Nguyen Ngoc Cuong
    • 1
  • Karen Veroy
    • 1
  • Anthony T. Patera
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations