Multiscale Modeling of Polymers

  • Doros N. Theodorou


Meeting today’s technological challenges calls for a quantitative understanding of structure-property-processing-performance relations in materials. Developing precisely this understanding constitutes the main objective of materials modeling and simulation. Along with novel experimental techniques, which probe matter at an increasingly finer scale, and new screening strategies, such as high-throughput experimentation, modeling has become an indispensable tool in the development of new materials and products.


Molecular Simulation Multiscale Modeling Atomistic Simulation Dissipative Particle Dynamic Mesoscopic Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D.N. Theodorou, “Understanding and predicting structure-property relations in polymeric materials through molecular simulations”, Mol. Phys., 102, 147–166, 2004.CrossRefADSGoogle Scholar
  2. [2]
    J.S. Yang, W.H. Jo, S. Santos, and U.W. Suter, “Plastic deformation in bisphenol-A-polycarbonate: applying an atomistic-continuum model”, In: M. Kotelyanskii, D.N. Theodorou (eds.), Simulation Methods for Polymers, Marcel Dekker, New York, 2004.Google Scholar
  3. [3]
    T.S. Jain and J.J. de Pablo, “Configurational bias techniques for simulation of complex fluids”, In: M. Kotelyanskii and D.N. Theodorou (eds.), Simulation Methods for Polymers, Marcel Dekker, New York, 2004.Google Scholar
  4. [4]
    D.N. Theodorou, “Variable connectivity monte carlo algorithms for the atomistic simulation of long-chain polymer systems”, In: P. Nielaba, M. Mareschal, and G. Ciccotti (eds.), Bridging Time Scales: Molecular Simulations for the Next Decade, Springer-Verlag, Berlin, pp. 69–128, 2002.Google Scholar
  5. [5]
    EG. Wang and D.P. Landau, “Efficient, multiple-range random walk algorithm to calculate the density of states”, Phys. Rev. Lett., 86, 2050–2053, 2001.CrossRefADSGoogle Scholar
  6. [6]
    J. Baschnagel, K. Binder, and W. Paul, “On the construction of coarse-grained models for linear flexible polymer chains: distribution functions for groups of consecutive monomers”, J. Chem. Phys., 95, 6014–6025, 1991.CrossRefADSGoogle Scholar
  7. [7]
    R.F. Rapold and W.L. Mattice, “Introduction of short and long range energies to simulate real chains on the 2nd lattice”, Macromolecules, 29, 2457–2466, 1996.CrossRefADSGoogle Scholar
  8. [8]
    W. Tchöp, K. Kremer, J. Batoulis, T. Bürger, and O. Hahn, “Simulation of polymer melts I. Coarse-graining procedures for polycarbonates”, Acta Polymerica, 41, 61–74 1998a.CrossRefGoogle Scholar
  9. [9]
    W. Tchöp, K. Kremer, O. Hahn, J. Batoulis, and T. Bürger, “Simulation of polymer melts II. From coarse-grained models back to atomistic description”, Acta Polymerica 41, 75–79, 1998b.Google Scholar
  10. [10]
    D. Reith, M. Pütz, and F. Müller-Plathe, “Deriving effective mesoscale potentials from atomistic simulations”, J. Comput. Chem., 24, 1624–1636, 2003.CrossRefGoogle Scholar
  11. [11]
    R. Everaers, S.K. Sukumaran, G.S. Grest et al. “Rheology and microscopic topology of entangled polymeric liquids”, Science, 202, 823–826, 2004.CrossRefADSGoogle Scholar
  12. [12]
    M. Doi and J. Takimoto, “Molecular modeling of entanglement”, Philos. T. Roy. Soc. A, 361, 641–650, 2003.CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    A.F. Terzis, D.N. Theodorou, and A. Stroeks, “Entanglement network of the polypropylene/polyamide interface 3. Deformation to fracture”, Macromolecules, 35, 508–521, 2002.CrossRefADSGoogle Scholar
  14. [14]
    G.H. Fredrickson, V. Ganesan, and F. Drolet, “Field-theoretic computer simulation methods for polymers and complex fluids”, Macromolecules, 35, 16–39, 2002.CrossRefADSGoogle Scholar
  15. [15]
    A.V. Zvelindovsky, G.J.A. Sevink, and J.G.E.M. Fraaije, “Dynamic mean-field DFT approach to morphology development”, In: M. Kotelyanskii and D.N. Theodorou (eds.), Simulation Methods for Polymers, Marcel Dekker, New York, 2004.Google Scholar
  16. [16]
    W.K. den Otter and J.H.R. Clarke, “Simulation of polymers by dissipative particle dynamics”, In: M. Kotelyanskii and D.N. Theodorou (eds.), Simulation Methods for Polymers, Marcel Dekker, New York, 2004.Google Scholar
  17. [17]
    H. Meyer and F. Müller-Plathe, “Formation of chain-folded structures in supercooled polymer melts examined by MD simulations”, Macromolecules, 35, 1241–1252, 2002.CrossRefADSGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Doros N. Theodorou
    • 1
  1. 1.School of Chemical EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations