Quantum Simulations as a Tool for Predictive Nanoscience

  • Giulia Galli
  • François Gygi

Abstract

In the last two decades, the coming of age of first principles theories of condensed and molecular systems, and the continuous increase in computer power have positioned physicists to address anew the complexity of matter at the microscopic level. Theoretical and algorithmic developments in ab initio molecular dynamics [1] and quantum Monte Carlo methods [2], together with optimized codes running on high-performance computers, have allowed many properties of matter to be inferred from the fundamental laws of quantum mechanics, without input from experiment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Car and M. Parrinello, Phys.Rev. Lett., 55, 2471, 1985.CrossRefADSGoogle Scholar
  2. [2]
    D.M. Ceperley and B. Alder, Phys. Rev. Lett., 45, 566, 1980.CrossRefADSGoogle Scholar
  3. [3]
    J-Y. Raty, G. Galli, A. Van Buuren, C. Boestedt, and L. Terminello, Phys. Rev. Lett., 90, 037401, 2003; J-Y. Raty and G. Galli, Nature Mat., 2, 792, 2003.CrossRefADSGoogle Scholar
  4. [4]
    A. Puzder, A.J. Williamson, F. Reboredo, and G. Galli, Phys. Rev. Lett., 91, 157405, 2003.CrossRefADSGoogle Scholar
  5. [5]
    A. Puzder, A.J. Williamson, F. Gygi and G. Galli, Phys. Rev. Lett., 92, 217401, 2004.CrossRefADSGoogle Scholar
  6. [6]
    A. Williamson, R.Q. Hood, and J.C. Grossman, Phys. Rev. Lett., 87, 246406, 2001.CrossRefADSGoogle Scholar
  7. [7]
    J.-L. Fattebert and J. Bernholc, Phys. Rev. B, 62, 1713, 2000; J.-L. Fattebert and F. Gygi, Comp. Phys. Comm., 162, 24, 2004.CrossRefADSGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Giulia Galli
    • 1
  • François Gygi
    • 1
  1. 1.Lawrence Livermore National LaboratoryUSA

Personalised recommendations