Advertisement

The Bond Fluctuation Model and Other Lattice Models

  • Marcus Müller

Abstract

Lattice models constitute a class of coarse-grained representations of polymeric materials. They have enjoyed a longstanding tradition for investigating the universal behavior of long chain molecules by computer simulations and enumeration techniques. A coarse-grained representation is often necessary to investigate properties on large time- and length scales. First, some justification for using lattice models will be given and the benefits and limitations will be discussed. Then, the bond fluctuation model by Carmesin and Kremer [1] is placed into the context of other lattice models and compared to continuum models. Some specific techniques for measuring the pressure in lattice models will be described. The bond fluctuation model has been employed in more than 100 simulation studies in the last decade and only few selected applications can be mentioned.

Keywords

Lattice Model Diblock Copolymer Bond Vector Ring Polymer Monte Carlo Move 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Carmesin and K. Kremer, “The bond fluctuation method — a new effective algorithm for the dynamics of polymers in all spatial dimensions”, Macromolecules, 21, 2819–2823, 1988.CrossRefADSGoogle Scholar
  2. [2]
    J. Baschnagel, K. Binder, P. Doruker, A.A. Gusev, O. Hahn, K. Kremer, W.L. Mattice, F. Müller-Plathe, M. Murat, W. Paul, S. Santos, U.W. Suter, and V. Tries “Bridging the gap between atomistic and coarse-grained models of polymers: status and perspectives”, Adv. Polym. Sci., 152, 41–156, 2000.CrossRefGoogle Scholar
  3. [3]
    M. Müller, “Mesoscopic and continuum models. In: J.H. Moore and J.H. Spencer (eds.), Encyclopedia of Physical Chemistry and Chemical Physics, vol II, IOP, Bristol, pp. 2087–2110, 2001.Google Scholar
  4. [4]
    M. Müller, K. Katsov, and M. Schick, “Coarse grained models and collective phenomena in membranes: computer simulation of membrane fusion”, J. Polym. Sci. B, Polym.Phys., 41, 1441–1450, 2003 (highlight article).CrossRefADSGoogle Scholar
  5. [5]
    P.G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, 1979.Google Scholar
  6. [6]
    K. Kremer and K. Binder, “Monte Carlo simulations of lattice models for macromolecules”, Comput. Phys. Rep., 7, 259–310, 1988.CrossRefADSGoogle Scholar
  7. [7]
    J.J. de Pablo and RA. Escobedo, “Monte Carlo methods for polymeric systems”, Adv. Chem. Phys., 105, 337–367, 1999.CrossRefGoogle Scholar
  8. [8]
    N. Madras and A.D. Sokal, “The pivot algorithm — a highly efficient Monte Carlo method for the self-avoiding walk”, J. Stat. Phys., 50, 109–186, 1988.zbMATHCrossRefMathSciNetADSGoogle Scholar
  9. [9]
    A.D. Sokal, “Monte Carlo methods for the self-avoiding walk”, In: K. Binder (ed.), Monte Carlo and Molecular Dynamics Simulations in Polymer Science, Oxford University Press, New York, p. 47, 1995.Google Scholar
  10. [10]
    J.I. Siepmann and D. Frenkel, “Configurational bias Monte Carlo — a new sampling scheme for flexible chains”, Mol. Phys., 75, 59–70, 1992.CrossRefADSGoogle Scholar
  11. [11]
    D. Frenkel and B. Smit, “Understanding molecular simulations: from algorithms to applications”, 2nd edn., Academic Press, Boston, 2001.Google Scholar
  12. [12]
    R. Dickman, “New simulation method for the equation of state of lattice chains”, J. Chem. Phys., 87, 2246–2248, 1987.CrossRefADSGoogle Scholar
  13. [13]
    M.R. Stukan, V.A. Ivanov, M. Müller, W. Paul, and K. Binder, “Finite size effects in pressure measurements for Monte Carlo simulations of lattice polymer systems”, J. Chem. Phys., 117, 9934–9941, 2002.CrossRefADSGoogle Scholar
  14. [14]
    A.D. Mackie, A.Z. Panagiotopoulos, D. Frenkel, and S.K. Kumar, “Constantpressure Monte Carlo simulations for lattice models”, Europhys. Lett., 27, 549–544, 1994.CrossRefADSGoogle Scholar
  15. [15]
    A. Poncela, A.M. Rubio, and JJ. Freire, “Gibbs ensemble simulations of a symmetric mixtures composed of the homopolymers AA and BB and their symmetric diblock copolymer”, J. Chem. Phys., 118, 425–133, 2003.CrossRefADSGoogle Scholar
  16. [16]
    J.S. Shaffer, “Effects of chain topology on polymer dynamics: bulk melts”, J. Chem. Phys., 101, 4205–1213, 1994.CrossRefADSGoogle Scholar
  17. [17]
    H.-P. Deutsch and K. Binder, “Interdiffusion and self-diffusion in polymer mixtures: a Monte Carlo study”, J. Chem. Phys., 94, 2294–2304, 1991.CrossRefADSGoogle Scholar
  18. [18]
    W. Paul, K. Binder, D.W. Heermann, and K. Kremer, “Crossover scaling in semidilute polymer solutions: a Monte Carlo test”, J. Phys. II, 1, 37–60, 1991.CrossRefGoogle Scholar
  19. [19]
    W. Paul, K. Binder, D.W. Heermann, and K. Kremer, “Dynamics of polymer solutions and melts — reptation predictions and scaling of relaxation times”, J. Chem. Phys., 95, 7726–7740, 1991.CrossRefADSGoogle Scholar
  20. [20]
    M. Müller, J.P. Wittmer, and M.E. Cates, “Topological effects in ring polymers: a computer simulation study”, Phys. Rev. E, 53, 5063–5074, 1996.CrossRefADSGoogle Scholar
  21. [21]
    J.U. Sommer and S. Lay, “Topological structure and nonaffine swelling of bimodal polymer networks”, Macromolecules, 25, 9832–9843, 2002.CrossRefADSGoogle Scholar
  22. [22]
    Z. Chen, C. Cohen, and F.A. Escobedo, “Monte Carlo simulation of the effect of entanglements on the swelling and deformation behavior of end-linked polymeric networks”, Macromolecules, 25, 3296–3305, 2002.CrossRefADSGoogle Scholar
  23. [23]
    J. Wittmer, A. Johner, J.F. Joanny, and K. Binder, “Chain desorption from a semidilute polymer brush — a Monte Carlo simulation”, J. Chem. Phys., 101, 4379–4390, 1994.CrossRefADSGoogle Scholar
  24. [24]
    P.Y. Lai and K. Binder, “Structure and dynamics of grafted polymer layers: a Monte Carlo simulation”, J. Chem. Phys., 95, 9288–9299, 1991.CrossRefADSGoogle Scholar
  25. [25]
    J.P. Wittmer, A. Milchev, and M.E. Cates, “Dynamical Monte Carlo study of equilibrium polymers: static properties”, J. Chem. Phys., 109, 834–845, 1998.CrossRefADSGoogle Scholar
  26. [26]
    N.B. Wilding, M. Müller, and K. Binder, “Chain length dependence of the polymersolvent critical point parameters”, J. Chem. Phys., 105, 802–809, 1996.CrossRefADSGoogle Scholar
  27. [27]
    J. Baschnagel, “Analysis of the incoherent intermediate scattering function in the framework of the idealized mode-coupling theory — a Monte Carlo study for polymer melts”, Phys. Rev. B, 49, 135–146, 1994.CrossRefADSGoogle Scholar
  28. [28]
    J. Baschnagel and K. Binder, “On the influence of hard walls on the structuralproperties in polymer glass simulation”, Macromolecules, 28, 6808–6818, 1995.CrossRefADSGoogle Scholar
  29. [29]
    M. Müller, “Miscibility behavior and single chain properties in polymer blends: a bond fluctuation model study”, Macromolecules Theory Simul, 8, 343–374, 1999 (feature article).CrossRefGoogle Scholar
  30. [30]
    E. Reister, M. Müller, and K. Binder, “Spinodal decomposition in a binary polymer mixture: dynamic self-consistent field theory and Monte Carlo simulations”, Phys. Rev. E, 64,041804/1–17, 2001.Google Scholar
  31. [31]
    K. Binder and M. Müller, “Monte Carlo simulation of block copolymers”, Curr. Opin. Colloid Interface Sci., 5, 315–323, 2001.Google Scholar
  32. [32]
    M. Müller, “Reactions at polymer interfaces: a Monte Carlo simulation”, Macromolecules 30, 6353–6357, 1997.CrossRefADSGoogle Scholar
  33. [33]
    G. Szamel and M. Müller, “Thin films of asymmetric triblock copolymers: a Monte Carlo study”, J. Chem. Phys., 118, 905–913, 2003.CrossRefADSGoogle Scholar
  34. [34]
    A. Werner, F. Schmid, M. Müller, and K. Binder, “Intrinsic profiles and capillary waves at homopolymer interfaces: a Monte Carlo study”, Phys. Rev. E, 59, 728–738, 1999.CrossRefADSGoogle Scholar
  35. [35]
    M. Müller and K. Binder, “Wetting and capillary condensation in symmetric polymer blends: a comparison between Monte Carlo simulations and self-consistent field calculations”, Macromolecules, 31, 8323–8346, 1998.CrossRefADSGoogle Scholar
  36. [36]
    M. Müller and K. Binder, “Interface localization-delocalization transition in a symmetric polymer blend: a finite size scaling Monte Carlo study”, Phys. Rev. E, 63,021602/1–16, 2001.Google Scholar
  37. [37]
    M. Müller and M. Schick, “Bulk and interfacial thermodynamics of a symmetric, ternary homopolymer-copolymer mixture: a Monte Carlo study”, J. Chem. Phys., 105, 8885–8901, 1996.CrossRefADSGoogle Scholar
  38. [38]
    J. Houdayer and M. Müller, “Deviations from the mean field predictions for the phase behavior of random copolymers”, Europhys. Lett., 58, 660–665, 2002.CrossRefADSGoogle Scholar
  39. [39]
    A. Cavallo, M. Müller, and K. Binder, “Anomalous scaling of the critical temperature of unmixing with chain length for two-dimensional polymer blends”, Europhys. Lett., 61, 214–220, 2003.CrossRefADSGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Marcus Müller
    • 1
  1. 1.Department of PhysicsUniversity of WisconsinMadison

Personalised recommendations