Lattice Boltzmann Methods for Multiscale Fluid Problems

  • Sauro Succi
  • Weinan E
  • Efthimios Kaxiras

Abstract

Complex interdisciplinary phenomena, such as drug design, crackpropagation, heterogeneous catalysis, turbulent combustion and many others, raise a growing demand of simulational methods capable of handling the simultaneous interaction of multiple space and time scales. Computational schemes aimed at such type of complex applications often involve multiple levels of physical and mathematical description, and are consequently referred to as to multiphysics methods [1, 2, 3]. The opportunity for multiphysics methods arises whenever single-level methods, say molecular dynamics and partial differential equations of continuum mechanics, expand their range of scales to the point where overlap becomes possible. In order to realize this multiphysics potential specific efforts must be directed towards the development of robust and efficient interfaces dealing with “hand-shaking” regions where the exchange of information between the different schemes takes place. Two-level schemes combing atomistic and continuum methods for crack propagation in solids or strong shock fronts in rarefied gases have made their appearance in the early 90s. More recently, threelevel schemes for crack dynamics, combining finite-element treatment of continuum mechanics far away from the crack with molecular dynamics treatment of atomic motion in the near-crack region and a quantum mechanical description of bond-snapping in the crack tip have been demonstrated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Seel, “Modelling of solid rocket fuel: from quantum chemistry to fluid dynamic simulations”, Comput. Phys., 5, 460–469, 1991.Google Scholar
  2. [2]
    W. Hoover, A.J. de Groot, and C. Hoover, “Massively parallel computer simulation of plane-strain elastic-plastic flow via non-equilibrium molecular dynamics and Lagrangian continuum mechanics”, Comput. Phys., 6(2), 155–162, 1992.CrossRefADSGoogle Scholar
  3. [3]
    F.F. Abraham, J. Broughton, N. Bernstein, and E. Kaxiras, “Spanning the length scales in dynamic simulation”, Comput. Phys., 12(6), 538–546, 1998.CrossRefADSGoogle Scholar
  4. [4]
    R. Benzi, S. Succi, and M. Vergassola, “The lattice Boltzmann equation: theory and applications”, Phys. Rep., 222, 145–197, 1992.CrossRefADSGoogle Scholar
  5. [5]
    S. Succi, “The lattice Boltzmann equation for fluid dynamics and beyond”, Oxford University Press, Oxford, 2001.Google Scholar
  6. [6]
    G. McNamara and G. Zanetti, “Use of the Boltzmann equation to simulate lattice gas automata”, Phys. Rev. Lett., 61, 2332–2335, 1988.CrossRefADSGoogle Scholar
  7. [7]
    F. Higuera, S. Succi, and R. Benzi, “Lattice gas dynamics with enhanced collisions”, Europhys. Lett., 9, 345–349, 1989.CrossRefADSGoogle Scholar
  8. [8]
    X. He and L.S. Luo, “A priori derivation of the lattice Boltzmann equation”, Phys. Rev. E, 55, R6333–R6336, 1997.CrossRefADSGoogle Scholar
  9. [9]
    Y.H. Qian, D. d’Humieres, and P. Lallemand, “Lattice BGK models for the NavierStokes equation”, Europhys. Lett., 17, 479–484, 1992.MATHCrossRefADSGoogle Scholar
  10. [10]
    S. Succi, I.V. Karlin, and H. Chen, “Role of the H theorem in lattice Boltzmann hydrodynamic simulations”, Rev. Mod. Phys., 74, 1203–1220, 2002.CrossRefADSGoogle Scholar
  11. [11]
    O. Filippova and D. Hänel, “Grid-refinement for lattice BGK models”, J. Comput. Phys., 147, 219–228, 1998.MATHCrossRefADSGoogle Scholar
  12. [12]
    H. Chen, C. Teixeira, and K. Molvig, “Realization of fluid boundary conditions via discrete Boltzmann dynamic”, Int. J. Mod. Phys. C, 9, 1281–1292, 1998.CrossRefADSGoogle Scholar
  13. [13]
    A. Dupuis, “From a lattice Boltzmann model to a parallel and reusable implementation of a virtual river”, PhD Thesis n. 3356, University of Geneva, 2002.Google Scholar
  14. [14]
    O. Fippova, S. Succi, F.D. Mazzocco, C. Arrighetti, G. Bella, and D. Haenel, “Multiscale lattice Boltzmann schemes with turbulence modeling”, J. Comp. Phys., 170, 812–829, 2001.CrossRefADSGoogle Scholar
  15. [15]
    S. Chen, S. Kandasamy, S. Orszag, R. Shock, S. Succi, and V. Yakhot, “Extended Boltzmann kinetic equation for turbulent flows”, Science, 301, 633–636, 2003.CrossRefADSGoogle Scholar
  16. [16]
    A. Gabrielli, S. Succi, and E. Kaxiras, “A lattice Boltzmann study of reactive microflows”, Comput. Phys. Commun., 147, 516–521, 2002.MATHCrossRefADSGoogle Scholar
  17. [17]
    S. Succi, G. Smith, O. Filippova, and E. Kaxiras, “Applying the Lattice Boltzmann equation to multiscale fluid problems”, Comput. Sci. Eng., 3(6), 26–37, 2001.CrossRefGoogle Scholar
  18. [18]
    M. Adamo, M. Bernaschi, and S. Succi, “Multi-representation techniques for multiscale simulation: reactive microflows in a catalytic converter”, Mol. Simul., 25(1–2), 13–26, 2000.Google Scholar
  19. [19]
    X.B. Nie, S. Chen, and G. Doolen, “Lattice Boltzmann simulations of fluid flows in MEMS”, J. Stat. Phys., 107, 279–289, 2002.MATHCrossRefGoogle Scholar
  20. [20]
    S. Succi, “Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneus catalysis”, Phys. Rev. Lett., 89(6), 064502, 2002.CrossRefADSGoogle Scholar
  21. [21]
    S. Ansumali and I.V. Karlin, “Kinetic boundary conditions in the lattice Boltzmann method”, Phys. Rev. E, 66, 026311–026317, 2002.CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    M. Silverberg, A. Ben-Shaul, and F. Rebentrost, “On the effects of adsorbate aggregation on the kinetics of surface-reactions”, J. Chem. Phys., 83, 6501–6513, 1985.CrossRefADSGoogle Scholar
  23. [23]
    T.P. Schulze, P. Smereka, and Weinan E, “Coupling kinetic Monte Carlo and continuum models with application to epitaxial growth”, J. Comput. Phys., 189, 197–211, 2003.MATHCrossRefMathSciNetADSGoogle Scholar
  24. [24]
    W. Cai, M. de Koning, V.V. Bulatov, and S. Yip, “Minimizing boundary reflections in coupled-domain simulations”, Phys. Rev. Lett, 85, 3213–3216, 2000.CrossRefADSGoogle Scholar
  25. [25]
    D. Raabe, “Overview of the lattice Boltzmann method for nano and microscale fluid dynamics in material science and engineering”, Model. Simul. Mat. Sci. Eng., 12(6), R13–R14, 2004.CrossRefADSGoogle Scholar
  26. [26]
    W.E, B. Engquist, Z.Y. Huang, “Heterogeneous multiscale method: a general methodology for multiscale modeling”, Phys. Rev. B, 67(9), 092101, 2003.CrossRefADSGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Sauro Succi
    • 1
  • Weinan E
    • 2
  • Efthimios Kaxiras
    • 3
  1. 1.Department of MathematicsPrinceton UniversityNJUSA
  2. 2.Department of PhysicsHarvard UniversityMAUSA
  3. 3.Istituto Applicazioni CalcoloNational Research CouncilRomeItaly

Personalised recommendations