Advertisement

Quasiparticle and Optical Properties of Solids and Nanostructures: The GW-BSE Approach

  • Steven G. Louie
  • Angel Rubio

Abstract

We present a review of recent progress in the first-principles study of the spectroscopic properties of solids and nanostructures employing a many-body Green’s function approach based on the GW approximation to the electron self-energy. The approach has been widely used to investigate the excitedstate properties of condensed matter as probed by photoemission, tunneling, optical, and related techniques. In this article, we first give a brief overview of the theoretical foundations of the approach, then present a sample of applications to systems ranging from extended solids to surfaces to nanostructures and discuss some possible ideas for further developments.

Keywords

Optical Absorption Spectrum Local Density Approximation Vertex Correction Quasiparticle Excitation Excitonic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Hedin, “New method for calculating the one-particle Green’s function with application to the electron-gas problem,” Phys. Rev., 139, A796, 1965.CrossRefADSGoogle Scholar
  2. [2]
    M.S. Hybertsen and S.G. Louie, “First-principles theory of quasiparticles: calculation of band gaps in semiconductors and insulators,” Phys. Rev. Lett., 55, 1418, 1985.CrossRefADSGoogle Scholar
  3. [3]
    M.S. Hybertsen and S.G. Louie, “Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies,” Phys. Rev. B, 34, 5390, 1986.CrossRefADSGoogle Scholar
  4. [4]
    W. Kohn, “Nobel lecture: electronic structure of matter-wave functions and density functionals,” Rev. Mod. Phys., 71, 1253, 1999.CrossRefADSGoogle Scholar
  5. [5]
    E. Runge and E.K.U. Gross, “Density-functional theory for time-dependent systems,” Phys. Rev. Lett., 52, 997, 1985.CrossRefADSGoogle Scholar
  6. [6]
    E.K.U. Gross, J. Dobson, and M. Petersilka, “Density functional theory of timedependent phenomena,” In Density Functional Theory II, R.F. Nalewajski (ed.), Topics in Current Chemistry, vol. 181, Springer, Berlin, p. 81, 1986.Google Scholar
  7. [7]
    G. Onida, L. Reining, and A. Rubio, “Electronic excitations: density functional versus many-body Green’s-function approaches,” Rev. Mod. Phys., 74, 601, 2002.CrossRefADSGoogle Scholar
  8. [8]
    L. Hedin and S. Lundqvist, “Effects of electron-electron and electron-phonon interactions on the one electron states of solids,” In: H. Ehrenreich, F. Seitz, and D. Turnbull (eds.), Solid State Physics, Academic Press, New York, vol. 23, p. 1, 1969.Google Scholar
  9. [9]
    F. Aryasetiawan and O. Gunnarsson, “GW method,” Rep. Prog. Phys., 61, 3, 1998. [10] M. Rohlfing and S.G. Louie, “Electron-hole excitations and optical spectra from first principles,” Phys. Rev. B, 62, 4927, 2000.CrossRefGoogle Scholar
  10. [11]
    S.G. Louie, “First-principles theory of electron excitation energies in solids, surfaces, and defects,” In: C.Y. Fong (ed.), Topics in Computational Materials Science, World Scientific, Singapore, p. 96, 1997.Google Scholar
  11. [12]
    W.G. Aulbur, L. Jönsson, and J. Wilkins, “Quasiparticle calculations in solids,” In: Solid State Physics, vol. 54, p. 1, 2000.CrossRefGoogle Scholar
  12. [13]
    A. Marini, G. Onida, and R. Del Sole, “Quasiparticle electronic structure of copper in the GW approximation,” Phys. Rev. Lett., 88, 016403, 2002.CrossRefADSGoogle Scholar
  13. [14]
    J.E. Northrup, M.S. Hybertsen, and S.G. Louie, “Many-body calculation of the surface state energies for Si(111)2 x 1,” Phys. Rev. Lett., 66, 500, 1991.CrossRefADSGoogle Scholar
  14. [15]
    M. Rohlfing and S.G. Louie, “Optical excitations in conjugated polymers,” Phys. Rev. Lett., 82, 1959, 1999.CrossRefADSGoogle Scholar
  15. [16]
    P.M. Echenique, J.M. Pitarke, E. Chulkov, and A. Rubio, “Theory of inelastic lifetimes of low-energy electrons in metals,” Chem. Phys., 251, 1, 2000.CrossRefGoogle Scholar
  16. [17]
    J. Cao, Y. Gao, H.E. Elsayed-Ali, R.D.E. Miller, and D.A. Mantell, “Femtosecond photoemission study of ultrafast dynamics in single-crystal Au(111) films,” Phys. Rev. B, 50, 10948, 1998.CrossRefADSGoogle Scholar
  17. [18]
    I. Campillo, J.M. Pitarke, A. Rubio, E. Zarate, and P.M. Echenique, “Inelastic lifetimes of hot electrons in real metals,” Phys. Rev. Lett., 83, 2230, 1999.CrossRefADSGoogle Scholar
  18. [19]
    I. Campillo, A. Rubio, J.M. Pitarke, A. Goldman, and P.M. Echenique, “Hole dynamics in noble metals,” Phys. Rev. Lett., 85, 3241, 2000.CrossRefADSGoogle Scholar
  19. [20]
    E.K. Chang, M. Rohlfing, and S.G. Louie, “Excitons and optical properties of alphaquartz,” Phys. Rev. Lett., 85, 2613, 2000.CrossRefADSGoogle Scholar
  20. [21]
    M. Rohlfing and S.G. Louie, “Excitonic effects and the optical absorption spectrum of hydrogenated Si clusters,” Phys. Rev. Lett., 80, 3320, 1998.CrossRefADSGoogle Scholar
  21. [22]
    M. Rohlfing and S.G. Louie, “Electron-hole excitations in semiconductors and insulators,” Phys. Rev. Lett., 81, 2312, 1998.CrossRefADSGoogle Scholar
  22. [23]
    L.X. Benedict, E.L. Shirley, and R.B. Bohm, “Optical absorption of insulators and the electron-hole interaction: an ab initio calculation,” Phys. Rev. Lett., 80, 4514, 1998.CrossRefADSGoogle Scholar
  23. [24]
    S. Albretch, L. Reining, R. Del Sole, and G. Onida, “Ab initio calculation of excitonic effects in the optical spectra of semiconductors,” Phys. Rev. Lett., 80, 4510, 1998.CrossRefADSGoogle Scholar
  24. [25]
    H.R. Philipp, “Optical transitions in crystalline and fused quartz,” Solid State Commun., 4, 73, 1966.CrossRefADSGoogle Scholar
  25. [26]
    D.E. Aspnes and A.A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs and InSb frp, 1.5 to 6.0 eV” Phys. Rev. B, 27, 985, 1983.CrossRefADSGoogle Scholar
  26. [27]
    P. Lautenschlager, M. Garriga, S. Logothetisdis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B, 35, 9174, 1987.CrossRefADSGoogle Scholar
  27. [28]
    M. Rohlfing and S.G. Louie, “Excitations and optical spectrum of the Si(111)-(2 x 1) surface,” Phys. Rev. Lett., 83, 856, 1999.CrossRefADSGoogle Scholar
  28. [29]
    M. Rohlfing, M. Palummo, G. Onida, and R. Del Sole, “Structural and optical properties of the Ge(111)-(2 x 1) surface,” Phys. Rev. Lett., 85, 5440, 2000.CrossRefADSGoogle Scholar
  29. [30]
    S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354, 56, 1991.CrossRefADSGoogle Scholar
  30. [31]
    Z.M. Li, Z.K. Tang, H.J. Liu, N. Wang, C.T. Chan, R. Saito, S. Okada, G.D. Li, J.S. Chen, N. Nagasawa, and S. Tsuda, “Polarized absorption spectra of single-walled 4 Å carbon nanotubes aligned in channels of an AlPO4-5 single crystal,” Phys. Rev. Lett., 87, 127401, 2001.CrossRefADSGoogle Scholar
  31. [32]
    M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, and R.E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science, 297, 593, 2002.CrossRefADSGoogle Scholar
  32. [33]
    S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, and R.B. Weisman, “Structure-as signed optical spectra of single-walled carbon nanotubes,” Science, 298, 2361, 2002.CrossRefADSGoogle Scholar
  33. [34]
    C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, and S.G. Louie, “Excitonic effects and optical spectra of single-walled carbon nanotubes,” Phys. Rev. Lett.1, 92, 077402, 2004.CrossRefADSGoogle Scholar
  34. [35]
    C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, and S.G. Louie, “Quasiparticle energies, excitonic effects and optical absorption spectra of small-diameter single-walled carbon nanotubes,” Appl. Phys. A, 78, 1129, 2004.CrossRefADSGoogle Scholar
  35. [36]
    E. Chang, G. Bussi, A. Ruini, and E. Molinari, “Excitons in carbon nanotubes: an ab initio symmetry-based approach,” Phys. Rev. Lett., 92, 196401, 2004.CrossRefADSGoogle Scholar
  36. [37]
    G. Onida, L. Reining, R.W. Godby, and W. Andreoni, “Ab initio calculations of the quasiparticle and absorption spectra of clusters: the sodium tetramer,” Phys. Rev. Lett., 75, 818, 1995.CrossRefADSGoogle Scholar
  37. [38]
    M.A.L. Marques, A. Castro, and A. Rubio, ’ Assesment of exchange-correlation functionals for the calculation of dynamical properties of small clusters in TDDFT,” J. Chem. Phys., 115, 3006, 2001. http://www.tddft.org/programs/octopus.CrossRefADSGoogle Scholar
  38. [39]
    C.R.C. Wang, S. Pollack, D. Cameron, and M.M. Kappes, “Optical absorption spectroscopy of sodium clusters as measured by collinear molecular-beam photodepletion,” J. Chem. Phys., 93, 3787, 1990.CrossRefADSGoogle Scholar
  39. [40]
    M.A.L. Marques, X. López, D. Varsano, A. Castro, and A. Rubio, “Time-dependent density-functional approach for biological photoreceptors: the case of the Green fluorescent protein,” Phys. Rev. Lett., 90, 158101, 2003.CrossRefGoogle Scholar
  40. [41]
    A. Marini, R. Del Sole, and A. Rubio, “Bound excitons in time-dependent densityfunctional-theory: optical and energy-loss spectra,” Phys. Rev. Lett., 91, 256402, 2003.CrossRefADSGoogle Scholar
  41. [42]
    B. Holm and U. von Barth, “Fully self-consistent GW self-energy of the electron gas,” Phys. Rev. B, 57, 2108, 1998.CrossRefADSGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Steven G. Louie
    • 1
    • 2
  • Angel Rubio
    • 3
  1. 1.Department of PhysicsUniversity of California at BerkeleyBerkeleyUSA
  2. 2.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Departamento Fásica de Materiales and Unidad de Fásica de Materiales Centro Mixto CSIC-UPVUniversidad del Paás Vasco and Donosita Internacional Phycis Center (DIPC)USA

Personalised recommendations