Advertisement

In-Water Instrumentation and Platforms for Ocean Color Remote Sensing Applications

  • Michael S. Twardowski
  • Marlon R. Lewis
  • Andrew H. Barnard
  • J. Ronald V. Zaneveld
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 7)

Keywords

Particulate Organic Carbon Geophysical Research Optical Sensor Ocean Optic Autonomous Underwater Vehicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aas, E., and N. K. Højerslev. 1999. Analysis of underwater radiance observations: Apparent optical properties and analytical functions describing the angular radiance distribution. Journal of Geophysical Research, 104: 8015–8024.Google Scholar
  2. Agrawal, Y.C., and H.C. Pottsmith. 2000. Instruments for Particle Size and Settling Velocity Observations in Sediment Transport. Marine Geology, 168:89-114.Google Scholar
  3. Aiken, J. and I. Bellan. 1990. Optical oceanography: an assessment of towed measurement. In P. J. Herring, A. Campbell, M. Whitfield, and L. Maddock, editors, Light and Life in the Sea, Cambridge University Press. Pg. 39-57.Google Scholar
  4. Antoine, D., and P. Guevel. 2000. Calibration and validation of satellite ocean color observations: the BOUSSOLE project. Proceedings of Ocean Optics XV, 16-20 October, Monaco, Office Naval Research, USA, CD-ROM.Google Scholar
  5. Antoine, D. and A. Morel. 1996. Oceanic primary production: I. Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations. Global Biogeochemical Cycles, 10:43- 55.Google Scholar
  6. Antoine, D., J.M. Andre, and A. Morel. 1996. Oceanic primary production: II. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll. Global Biogeochemical Cycles, 10:57-69.Google Scholar
  7. Babin, M., A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski. 2003. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnology and Oceanography, 48(2):843-859.CrossRefGoogle Scholar
  8. Balch, W.M., D. Drapeau, B. Bowler, E. Booth, J. Goes, A. Ashe, and J. Fry. 2004. A multi-year record of optical properties in the Gulf of Maine: I. Spatial and temporal variability. Progress in Oceanography, In Press.Google Scholar
  9. Balch, W.M., D.T. Drapeau, T.L. Cucci, R.D. Vaillancourt, K.A. Kilpatrick, and J.J. Fritz. 1999. Optical backscattering by calcifying algae: separating the contribution by particulate inorganic and organic carbon fractions. Journal of Geophysical Research, 104:1541–1558.Google Scholar
  10. Barnard, A.H. and C. S. Roesler. 2003. Temporal variability in the remotely sensed reflectance in the Eastern Maine Coastal Current as observed by the Gulf of Maine Ocean Observing System (GOMOOS). ASLO Aquatic Science Meeting. Salt Lake City, UT.Google Scholar
  11. Barth, J.A., and D.J. Bogucki. 2000. Spectral light absorption and attenuation measurements from a towed undulating vehicle. Deep-Sea Research I, 47:323-342.Google Scholar
  12. Bartz, R., J.R.V. Zaneveld, and H. Pak. 1978. Transmission for profiling and moored observation in water. Ocean Optics V, Interntational Society For Optical Engineering, pg. 102-108.Google Scholar
  13. Behrenfeld, M., and P. Falkowski. 1997. A consumer’s guide to phytoplankton primary productivity models. Limnology and Oceanography, 42(7):1479-1491.CrossRefGoogle Scholar
  14. Bishop, J., S.E. Calvert, and M.Y.S. Soon. 1999. Spatial and temporal variability of POC in the northeast Subarctic Pacific. Deep-Sea Research II, 46:2699-2733.Google Scholar
  15. Bishop, J., R.E. Davis, and J.T. Sherman, 2002. Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science, 298:817-821.Google Scholar
  16. Blidberg, D.R. 1991. Autonomous underwater vehicles: a tool for the ocean. Unmanned systems, 9:10-15.Google Scholar
  17. Blough, N.V., and Green, S.A., 1995. Spectroscopic characterization and remote sensing of non-living organic matter. In: R.G. Zepp and Ch. Sonntag (Editors), The Dahlem workshop on the role of nonliving organic matter in the Earth’s carbon cycle, Berlin, 1993. John Wiley and Sons, New York, pg. 23-45.Google Scholar
  18. Boss, E., and W.S. Pegau. 2001. Relationship of light scattered at an angle in the backward direction to the backscattering coefficient. Applied Optics, 40:5503-5507.Google Scholar
  19. Boss, E. and J.R.V. Zaneveld. 2003. The effect of bottom substrate on inherent optical properties: evidence of biogeochemical processes. Limnology and Oceanography, 48(1, part 2):346-354.Google Scholar
  20. Boss, E., M.S. Twardowski, and S. Herring. 2001. Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution. Applied Optics, 40:4885-4893.Google Scholar
  21. Boss, E., W. S. Pegau, M. Lee, M. S. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange. 2004. The particulate backscattering ratio at LEO-15 and its use to study particles composition and distribution. Journal of Geophysical Research – Oceans, In Press.Google Scholar
  22. Bricaud, A., and D. Stramski. 1990. Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: A comparison between Peru upwelling area and the Sargasso Sea. Limnology and Oceanography, 35:562–582.Google Scholar
  23. Brown, O.B., and H.R. Gordon. 1974. Size-refractive index distribution of clear coastal water particulates from light scattering, Applied Optics, 13:2874-2881.Google Scholar
  24. Brown, D., J. Isaacs, and M. Sessions. 1971. Continuous temperature-depth profiling deep-moored buoy system. Deep-Sea Research, 18:845-849.Google Scholar
  25. Brown, C.A., Y. Huot, M.J. Purcell, J.J. Cullen, and M.R. Lewis. 2004. Mapping coastal bio-optical properties with an autonomous underwater vehicle (AUV) and a spectral inversion model. Limnology and Oceanography Methods, Submitted.Google Scholar
  26. Campbell, J., and others. 2002. Comparisons of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance. Global Biogeochemical Cycles, 16(3): 10.1029/2001GB001444 Google Scholar
  27. Carder, K. L., Chen, F. R., Lee, Z. P., Hawes, S., & Kamykowski, D. 1999. Semi-analytic MODIS algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures. Journal of Geophysical Research, 104(C3):5403-5421.Google Scholar
  28. Carder, K.L., R.G. Steward, G.R. Harvey, and P.B. Ortner. 1989. Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll, Limnology and Oceanography, 34:68-81.CrossRefGoogle Scholar
  29. Chang, G.C., T.D. Dickey, and A.J. Williams, III. 2001. Sediment resuspension over a continental shelf during Hurricanes Edouard and Hortense. Journal of Geophysical Research, 106:9517-9531.Google Scholar
  30. Chavez, F.P., P.G. Strutton, G. Friederich, A. Feely, G.C. Feldman, D.C. Foley, and M.J. McPhaden. 1999.Google Scholar
  31. Biological and chemical response of the equatorial Pacific Ocean to the 1997-98 El Nino. Science, 286:2126-2131.Google Scholar
  32. Chavez, F.P., D. Wright, R. Herlien, M. Kelley, F. Shane, and P.G. Strutton. 2000. A device for protecting moored spectroradiometers from fouling. Journal of Atmospheric and Oceanic Technology, 17:215-219.Google Scholar
  33. Ciotti, A.M., Cullen, J.J., and Lewis, M.R. 1999. A semi-analytical model of the influence of phytoplankton community structure on the relationship between light attenuation and ocean color. Journal of Geophysical Research, 104:1559-1578.Google Scholar
  34. Clark, D. 2003. MODIS Ocean Data Product MOD23, ATBD 18. Can be viewed at http://modisocean. gsfc.nasa.gov/qa/dataproductmap.html.Google Scholar
  35. Clark, D., H.R. Gordon, K.J. Voss, Y. Ge, W. Broenkow, and C. Trees. 1997. Validation of atmospheric correction over the oceans. Journal of Geophysical Research, 102:17,209-17,217.Google Scholar
  36. Claustre, H., F. Fell, K. Oubelkheir, L. Prieur, A. Sciandra, B. Gentili, and M. Babin. 2000. Continuous monitoring of surface optical properties across a geostrophic front: biogeochemical inferences. Limnology and Oceanography, 45(2):309-321.CrossRefGoogle Scholar
  37. Claustre, H., A. Morel, M. Babin, C. Cailliau, D. Marie, J-C. Marty, D. Tailliez, and D. Vaulot. 1999. Variability in particle attenuation and chlorophyll fluorescence in the tropical Pacific: scales, patterns, and biogeochemical implications. Journal of Geophysical Research, 104(C2):3401-3422.Google Scholar
  38. CLIVAR. 1999. The design and implementation of Argo – A global array of profiling floats. Report 21, International CLIVAR Project Office, Southampton, UK, pg. 1-35.Google Scholar
  39. Coble, P.G. 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry, 51:325-346.Google Scholar
  40. Coble, P.G, C.A. Schultz, and K. Mopper. 1993. Fluorescence contouring analysis of DOC Intercalibration Experiment samples: a comparison of techniques. Marine Chemistry, 41:173-178.Google Scholar
  41. Conmy, R.N., Coble, P.G., and Del Castillo, C.E. 2004. Calibration and performance of a new in-situ multichannel fluorometer for measurement of colored dissolved organic matter in the ocean. Continental Shelf Research, In Press.Google Scholar
  42. Davis, R. E., J. T. Sherman and J. Dufour, 2001: Profiling ALACEs and other advances in autonomous subsurface floats. Journal of Atmospheric and Oceanic Technology, 18:982-993.Google Scholar
  43. De Domenico, L., E. Crisafi, G. Magazzu, A. Puglisi, and A. La Rosa. 1994. Monitoring of petroleum hydrocarbon pollution in surface waters by a direct comparison of fluorescence spectroscopy and remote sensing techniques. Marine Pollution Bulletin, 28:587.Google Scholar
  44. Del Castillo, C.E., P.G. Coble, R.N. Conmy, F.E. Muller-Karger, L. Vanderbloemen, and G.A. Vargo. 2000. Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: Documenting the intrusion of the Mississippi River plume in the West Florida Shelf. Limnology and Oceanography, 46(7):1836-1843.Google Scholar
  45. Del Castillo, C.E., P.G. Coble, J.M. Morell, J.M. Lopez, and J.E. Corredor. 1999. Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy. Marine Chemistry, 66:35-51.Google Scholar
  46. Desiderio, R.A., T.J. Cowles, J.N. Moum, and M.L. Myrick. 1993. Microstructure profiles of laser-induced chlorophyll fluorescence spectra: evaluation of backscatter and forward-scatter fiber-optic sensors. Journal of Atmospheric and Oceanic Technology, 10:209-224.Google Scholar
  47. Desiderio, R.A., T.J. Cowles, J.R.V. Zaneveld, and C. M. Moore. 1996. Multi-excitation spectral absorption and fluorescence: a new in situ device for characterizing dissolved and particulate material. AGU meeting abstract OS21C-10, p. OS52, San Diego, CA, Feb. pg. 12-16.Google Scholar
  48. Determann, S., J.M. Lobbes, R. Reuter, and J. Rullkotten. 1998. UV fluorescence excitation and emission spectroscopy of marine algae and bacteria. Marine Chemistry, 62:137-156.Google Scholar
  49. Dickey, T. and G. Chang. 2001 New technologies and their roles in advancing recent biogeochemical studies. Oceanography, 14(4):108-120.Google Scholar
  50. Dickey, T., and D.A. Siegel [Eds.]. 1993. Bio-optics in U.S. JGOFS. Report of the bio-optics workshop, June 17-19, 1991, Boulder, CO.Google Scholar
  51. Dickey, T., M. Lewis, and G. Chang. 2004. Optical oceanography: recent advances and future directions using global remote sensing and in situ observations. In J.F. Gower (Ed.), Manual for Remote Sensing of the Oceans. In Press Google Scholar
  52. Dickey, T., C. Moore and O-SCOPE Group. 2003. New sensors monitor bio-optical / biogeochemical ocean changes. Sea Technology, 44(10):17-24 Google Scholar
  53. Dickey, T., D. Frye, H. Jannasch, E. Boyle, D. Manov, D. Sigurdson, H. McNeil, M. Stramska, A. Michaels, N. Nelson, D. Siegel, G. Chang, J. Wu, and A. Knap. 1998. Initial results from the Bermuda Test bed Mooring Program. Deep-Sea Research I, 45:771-794.Google Scholar
  54. Dierssen, H.M., R.C. Zimmerman, R.A. Leathers, T.V. Downes, and C.O. Davis. 2003. Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by high-resolution airborne imagery. Limnology and Oceanography, 48(1, part 2):444-455.Google Scholar
  55. Donaghay, P.L., H.M. Rines, and J.McN. Sieburth. 1992. Simultaneous sampling of fine scale biological, chemical, and physical structure in stratified waters. Arch. Hydrobiol. Beih. Ergebn. Limnol, 36:97-108.Google Scholar
  56. Donaghay, P.L., J.M. Sullivan, C. Moore, and B. Rhoades. 2002. 4-D measurement of the finescale structure of inherent optical properties in the coastal ocean using the Ocean Response Coastal Analysis System (ORCAS). Proceedings from Ocean Optics XVI, 18-22 November, Santa Fe, NM, Office Naval Research, USA, CD-ROM.Google Scholar
  57. Echert, D., J. Morison, G. White, and E. Geller. 1989. The autonomous ocean profiler: A current-driven oceanographic sensor platform. IEEE Journal Oceanic Engineering, 14:195-202.Google Scholar
  58. Eisner, L., M.S. Twardowski, T.J. Cowles, and M.J. Perry. 2003. Resolving phytoplankton photoprotective:photosynthetic carotenoid ratios on fine scales using in situ spectral absorption measurements. Limnology and Oceanography, 48:632-646.CrossRefGoogle Scholar
  59. Ferrari, G.M., Hoepffner, and M. Mingazzini. 1996. Optical properties of the water in a deltaic environment: prospective tool to analyze satellite data in turbid waters. Remote Sensing of the Environment, 56:69-80.Google Scholar
  60. Fugate, D.C., and C.T. Friedrichs. 2002. Determining concentration and fall velocity of estuarine particle populations using ADV, OBS, and LISST. Continental Shelf Research, 22:1867-1886.Google Scholar
  61. Gardner, W.D., I.D. Walsh, and M.J. Richardson. 1993. Biophysical forcing of particle production and distribution during a spring bloom in the North Atlantic. Deep-Sea Research II, 40:171-195.Google Scholar
  62. Gardner, W.D., J.C. Blakey, I.D. Walsh, M.J. Richarson, S. Pegau, J.R.V. Zaneveld, C. Roesler, M.C. Gregg, J. A. MacKinnon, H.M. Sosik, and A.J. Williams III. 2001. Optics, particles, stratification, and storms on the New England continental shelf. Journal of Geophysical Research, 106(C5):9473-9497.Google Scholar
  63. Garver, S.A. and D.A. Siegel. 1997. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea. Journal of Geophysical Research, 102:18,607-18,625.Google Scholar
  64. Goes, J.I., T. Saino, H. Oaku, J. Ishizaka, C.S. Wong, and Y. Nojiri. 2000. Basin scale estimates of sea surface nitrate and new production from remotely sensed sea surface temperature and chlorophyll. Geophysical Research Letters, 27:1263–1266.Google Scholar
  65. Gordon, H. and W. Balch. 2003. MODIS Ocean Data Product MOD25, ATBD 23. Can be viewed at http://modisocean.gsfc.nasa.gov/qa/dataproductmap.html.Google Scholar
  66. Gordon, H.R., O.B. Brown, R.H. Evans, J.W. Brown, R.C. Smith, K.S. Baker, and D.K. Clark. 1988. A semianalytical radiance model of ocean color. Journal of Geophysical Research, 93:10,909-10,924.Google Scholar
  67. Gould, R.W., and R.A. Arnone. 1998. Three-dimensional modeling of inherent bio-optical properties in a coastal environment: coupling ocean colour imagery and in situ measurements. International Journal of Remote Sensing, 19:2141-2159.Google Scholar
  68. Griffiths, G., R. Davis, C. Erikson, D. Frye, P. Marchand, and T. Dickey. 2001. Towards new platform technology for sustained observations, In: Observing the Ocean for Climate in the 21st Century, C.J. Koblinsky and N.R. Smith [Eds.]. GODAE, Bureau of Meteorology, Australia, Melbourne, pg. 324-338.Google Scholar
  69. Hales, B. 2001. Small-scale variability in the Ross Sea. Oceanography, 14:90.Google Scholar
  70. Haltrin, V.I. and R. A. Arnone. 2003. An algorithm to estimate concentrations of suspended particles in seawater from satellite optical images. Proceedings of the II International Conference “Current Problems in Optics of Natural Waters,” ONW 2003, I. Levin and G. Gilbert [Eds.], St. Petersburg, Russia.Google Scholar
  71. Hanson, A.K. 2000. A new in situ chemical analyzer for mapping coastal nutrient distributions in real time.Google Scholar
  72. Proceedings from Oceans 2000 MTS/IEEE, 3:1975-1982.Google Scholar
  73. Hanson, A.K. and P.L. Donaghay. 1998. Micro- to Fine-scale Chemical Gradients and Thin Plankton Layers in Stratified Coastal Waters. Oceanography, 11(7):10-17.Google Scholar
  74. Hays, G.C. and Lindley, J.A. 1994. Estimating chlorophyll a abundance from the 'phytoplankton colour' recorded by the Continuous Plankton Recorder survey: Validation with simultaneous fluorometry. Journal of Plankton Research, 168: 23-34.Google Scholar
  75. Hoge, F.E. and P.E. Lyon. 1999. Spectral parameters of inherent optical property models: Methods for satellite retrieval by matrix inversion of an oceanic radiance model. Applied Optics, 38:1657-1662.Google Scholar
  76. Holdway, D., A. Radlinski, N. Exon, J-M. Auzende, and S. Van de Beuque. 2000. Continuous multi-spectral fluorescence and absorption spectroscopy for petroleum hydrocarbon detection in near-surface ocean waters: ZoNeCo5 Survey, Fairway Basin area, Lord Howe Rise. Australian Geological Survey Organisation, Record 2000/35, Canberra, Australia, ACT 2601.Google Scholar
  77. Hooker, S.B. and A. Morel. 2003. Platform and environmental effects on above-water determinations of water-leaving radiances. Journal of Atmospheric and Oceanic Technology, 20:187-205.Google Scholar
  78. Hooker, S.B., G. Lazin, G. Zibordi, and S. McLean. 2002. An Evaluation of Above- and In-Water Methods for Determining Water-Leaving Radiances. Journal of Atmospheric and Oceanic Technology, 19:486- 515.Google Scholar
  79. IOCCG Report 3. 2000. Remote sensing of ocean colour in coastal, and other optically-complex waters.Google Scholar
  80. Report 3 of the International Ocean Colour Coordinating Group, S. Sathyendranath [Ed.]. Dartmouth, Nova Scotia, Canada, 140 pp.Google Scholar
  81. Johnson, K.S., and L.J. Coletti. 2002. In situ ultraviolet spectrophotometry for high resolution and long-term monitoring of nitrate, bromide and bisulfide in the ocean. Deep-Sea Research I, 49:1291-1305.Google Scholar
  82. Kirk. J.T.O. 1992. Monte Carlo modeling of the performance of a reflective tube absorption meter. Applied Optics, 31(30):6463-6468.Google Scholar
  83. Kirk, J.T.O. 1994. Light and photosynthesis in aquatic ecosystems., 2nd ed. Cambridge, 509 pp.Google Scholar
  84. Kirkpatrick, G.J., D.F. Millie, M. Moline, and O. Schofield. 2000. Optical discrimination of a phytoplankton species in natural mixed populations. Limnology and Oceanography, 45(2):467-471.CrossRefGoogle Scholar
  85. Klinkhammer, G.P., J. McManus, D. Colbert, and M.D. Rudnick. 2000. Behavior of terrestrial dissolved organic matter at the continent-ocean boundary from high-resolution distributions. Geochimica Cosmochimica Acta, 64:2765-2774.Google Scholar
  86. Kratzer, S., D. Bowers, and P.B. Tett. 2000. Seasonal changes in colour ratios and optically active constituents iin the optical case-2 waters of the Menai Strait, North Wales. International Journal of Remote Sensing, 21(11):2225-2246.Google Scholar
  87. Leathers, R.A., T.V. Downes, and C.D. Mobley. 2001. Self-shading correction for upwelling sea-surface radiance measurements made with buoyed instruments. Optics Express, 8:561-570.Google Scholar
  88. Lee, M.E., and M.R. Lewis. 2003. A new method for the measurement of the optical volume scattering function in the upper ocean. Journal of Atmospheric and Oceanic Technology, 20(4):563-571.Google Scholar
  89. Lewis, M.R., N. Kuring, and C.S. Yentsch. 1988. Global patterns of ocean transparency: Implications for the new production of the open ocean. Journal of Geophysical Research, 93:6847-6856.Google Scholar
  90. Lewis, M.R., M.E. Carr, G. Feldman, W. Esaias, and C. McClain. 1990. The influence of penetrating irradiance on the heat budget of the equatorial Pacific Ocean. Nature, 347:543-545.Google Scholar
  91. Loisel, H., and A. Morel. 1998. Light scattering and chlorophyll concentration in case 1 waters: A reexamination. Limnology and Oceanography, 43:847-858.CrossRefGoogle Scholar
  92. Loisel, H. and D. Stramski. 2000. Estimation of the inherent optical properties of natural waters from irradiance attenuation coefficient and reflectance in the presence of Raman scattering. Applied Optics, 39:3001-3011.Google Scholar
  93. Loisel H., D. Stramski, B.G. Mitchell, F. Fell, V. Fournier-Sicre, B. Lemasle and M. Babin. 2001. Comparison of the ocean inherent optical properties obtained from measurements and inverse modeling. Applied Optics, 40:2384-2397.Google Scholar
  94. Maffione, R.A., and D.R. Dana. 1997. Instruments and methods for measuring the backward-scattering coefficient of ocean waters. Applied Optics, 36:6057.Google Scholar
  95. Manov, D.V., G.C. Chang, and T.D. Dickey. 2004. Methods for reducing biofouling of moored optical sensors. Journal of Atmospheric and Oceanic Technology, In Press.Google Scholar
  96. Maritorena, S., D.A. Siegel, and A.R. Peterson. 2002. Optimization of a semianalytical ocean color model for global-scale applications. Applied Optics, 41(15):2705-2714.Google Scholar
  97. Mayer, L.M., L.L. Schick, and T. Loder, 1999. Dissolved protein fluorescence in two Maine estuaries, Marine Chemistry, 64:171-179.Google Scholar
  98. McKnight, D.M., E.W. Boyer, P.K. Westerhoff, P.T. Doran, T. Kulbe, and D.T. Andersen. 2001.Google Scholar
  99. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 46(1):38-48.Google Scholar
  100. McLean, S., B. Scofield, G. Zibordi, M. Lewis, S. Hooker, and A. Weidemann. 1997. Field evaluation of antibiofouling compounds on optical instrumentation. SPIE, 2963:708-713.Google Scholar
  101. Miller, R., M.S. Twardowski, C. Moore, and C. Casagrande. 2003. The Dolphin: Technology to Support Remote Sensing Bio-optical Algorithm Development and Applications. Backscatter, 14(2):8-12.Google Scholar
  102. Mishonov, A.V., W.D. Gardner, and M.J. Richardson. 2003. Remote sensing and surface POC concentration in the South Atlantic. Deep-Sea Research II, 50(22-26):2997-3015.Google Scholar
  103. Mitchell, B.G., M. Kahru, and J. Sherman. 2000. Autonomous temperature-irradiance profiler resolves the spring bloom in the Sea of Japan. Proceedings of Ocean Optics XV, 16-20 October, Monaco, Office Naval Research, USA, CD-ROM.Google Scholar
  104. Mobley, C.D. 1994. Light and water: radiative transfer in natural waters. Academic, San Diego, CA, 592 pp.Google Scholar
  105. Moore, C.M.. 1994. In situ biochemical, oceanic optical meters: spectral absorption, attenuation, fluorescence meters – a new window of opportunity for ocean scientists. Sea Technology, 35:10-16.Google Scholar
  106. Moore, C., B. Rhodes, A. Derr, and R. Zaneveld. 2004. An instrument for hyperspectral characterization of inherent optical properties in natural waters. ALSO/TOS Ocean Research Conference, 15-20 February, Honolulu, HA.Google Scholar
  107. Moore, C., M.S. Twardowski, and J.R.V. Zaneveld. 2000. The ECO VSF - A multi-angle scattering sensor for determination of the volume scattering function in the backward direction. Proceedings of Ocean Optics XV, 16-20 October, Monaco, Office Naval Research, USA, CD-ROM.Google Scholar
  108. Moore, C., J.R.V. Zaneveld, and J.C. Kitchen. 1992. Preliminary results from an in situ spectral absorption meter. Ocean Optics XI, Proceedings of SPIE, 1750:330-337.Google Scholar
  109. Morel, A. 1974. Optical properties of pure water and pure seawater, In: Optical aspects of Oceanography, N.G. Jerlov and E. Steemann Nielson [Eds.], pp. 1-24, Academic, New York.Google Scholar
  110. Morel, A. 1980. In-water and remote measurements of ocean color. Boundary-Layer Meteorology, 18:177- 201.Google Scholar
  111. Morel, A. 1988. Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). Journal of Geophysical Research, 93:10,749-10,768.Google Scholar
  112. Morel, A. 1991. Light and marine photosynthesis: A spectral model with geochemical and climatological implications. Progress in Oceanography, 26:263-306.Google Scholar
  113. Morel, A. and B. Gentili. 1996. Diffuse reflectance of oceanic waters, III: implications of bidirectionality for the remote sensing problem. Applied Optics, 35:4850-4862.Google Scholar
  114. Morel, A. and S. Maritorena. 2001. Bio-optical properties of oceanic waters: a reappraisal. Journal of Geophysical Research, 106(C4):7163-7180.Google Scholar
  115. Morel, A. and J.L. Mueller. 2003. Normalized water-leaving radiance and remote sensing reflectance: Bidirectional reflectance and other factors. In: Mueller, J.L., G.S. Fargion, and C.R. McClain [Eds]. Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume III: Radiometric Measurements and Data Analysis Protocols. NASA, Goddard Space Flight Center, Greenbelt, MD, pg.Google Scholar
  116. Morel, A. and L. Prieur. 1977. Analysis of variations in ocean color. Limnology and Oceanography, 22:709- 722.CrossRefGoogle Scholar
  117. Morel, A., K. J. Voss, and B. Gentilli. 1995. Bi-directional reflectance of oceanic waters: A comparison of model and experimental results. Journal of Geophysical Research, 100:13,143-13,150.Google Scholar
  118. Mueller, J.L., G.S. Fargion, and C.R. McClain [Eds]. 2003. Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume IV. NASA, Goddard Space Flight Center, Greenbelt, MD.Google Scholar
  119. O'Reilly, J.E. and others. 2000. Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4, In: SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3. NASA Tech. Memo. 2000-206892, Vol. 11, S.B. Hooker and E.R. Firestone [Eds.], NASA Goddard Space Flight Center, Greenbelt, MD.Google Scholar
  120. Pages, J., and F. Gadel. 1990. Dissolved organic matter and UV absorption in a tropical hyperhaline estuary.Google Scholar
  121. The Science of the Total Environment, 99:173-204.Google Scholar
  122. Pegau, W.S., and others. 1995. A comparison of methods for the measurement of the absorption coefficient in natural waters. Journal of Geophysical Research, 100(C7):13,201-13,220.Google Scholar
  123. Pegau, W.S., J. Barth, and M. Kosro. 2000. Optical variability off the Oregon coast. Proceedings of Ocean Optics XV, 16-20 October, Monaco, Office Naval Research, USA, CD-ROM.Google Scholar
  124. Pegau, W.S., A. Barnard, E. Boss, and M. Twardowski. 1999. Ac9 protocols. At: http://photon.oce.orst.edu/ocean/instruments/ac9/ac9.html.Google Scholar
  125. Peterson, R.E.. 1978. A study of suspended particulate matter: Arctic Ocean and northern Oregon continental shelf. Ph.D. thesis, Oregon State University. 134 pp.Google Scholar
  126. Petrenko, A.A., B.H. Jones, T.D. Dickey, M. LeHaitre, and C. Moore. 1997. Effects of a sewage plume on the biology, optical characteristics, and particle size distributions of coastal waters. Journal of Geophysical Research, 102(C11):25,061-25,071.Google Scholar
  127. Petzold, T.J. 1972. Volume scattering functions for selected ocean waters. Rep. 72-78, Scripps Institution of Oceanography, La Jolla, CA.Google Scholar
  128. Pinkerton, M.H. and J. Aiken. 1999. Calibration and validation of remotely sensed observations of ocean color from a moored data buoy. Journal of Oceanic and Atmospheric Technology, 37:8710-8723.Google Scholar
  129. Platt, T. and M.R. Lewis. 1987. Estimation of phytoplankton production by remote sensing. Advanced Space Research, 7:131-134.Google Scholar
  130. Pope, R.M., and E.S. Fry. 1997. Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. Applied Optics, 36:8710-8723.Google Scholar
  131. Prahl, F.G., L.F. Small, and B. Eversmeyer. 1997. Biogeochemical characterization of suspended particulate matter in the Columbia River estuary. Marine Ecology Progress Series, 160:173-184.Google Scholar
  132. Preisendorfer, R.W. 1976. Hydrologic Optics, Volumes 1-6. Department of Commerce, National Oceanic and Atmospheric Administration, Washington, D.C. Provost, C. and M. du Chaffaut. 1996. ‘Yoyo Profiler’: an autonomous multisensor. Sea Technology X:39-45.Google Scholar
  133. Purcell, M., T. Austin, R. Stokey, C. von Alt, and K. Prada. 1997. Measurements in coastal waters. Proceedings of Oceans ’97 MTS/IEEE, pg. 219-24.Google Scholar
  134. Rainville, L. and R. Pinkel. 2001. Wirewalker: An autonomous wave-powered vertical profiler. Journal of Atmospheric and Oceanic Technology, 18:1048-1051.Google Scholar
  135. Reynolds-Fleming, J., J. Fleming, and R. Luettich, Jr. 2002. Portable autonomous vertical profiler for estuarine applications. Estuaries, 25:142-147.Google Scholar
  136. Roesler, C.S. and A.H. Barnard. 2003. Temporal variability in ecosystem structure in the Eastern Maine Coastal Current as observed by the Gulf of Maine Ocean Observing System (GOMOOS). ASLO Aquatic Science Meeting. Salt Lake City, UT.Google Scholar
  137. Roesler, C.S., and E. Boss. 2003. Ocean color inversion yields estimates of the spectral beam attenuation coefficient while removing constraints on particle backscattering spectra. Geophysical Research Letters, 30(9):1468.Google Scholar
  138. Roesler, C.S., and M.J. Perry. 1995. In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance. Journal of Geophysical Research, 100:13,279-13,294.Google Scholar
  139. Roesler, C.S., M.J. Perry, and K.L. Carder. 1989. Modeling in situ phytoplankton absorption from total absorption spectra. Limnology and Oceanography, 34:1512-1525.CrossRefGoogle Scholar
  140. Sathyendranath, S., T. Platt, C.M. Caverhill, R.E. Warnock, and M.R. Lewis. 1989. Remote sensing of oceanic primary productivity: Computations using a spectral model. Deep-Sea Research I, 36:431-453.Google Scholar
  141. Sathyendranath, S., T.Platt, E. P. W. Horne, W. G. Harrison, O. Ulloa, R. Outerbridge, and N. Hoepffner. 1991. Estimation of new production in the ocean by compound remote sensing. Nature, 353:129-133.Google Scholar
  142. Schofield, O., S. Glenn, G. Kirkpatrick, M. Moline, C. Jones. 2004. Mapping red tide using autonomous underwater Webb gliders. ALSO/TOS Ocean Research Conference, 15-20 February, Honolulu, HA.Google Scholar
  143. Schofield, O., J. Gryzmski, P. Bissett, G. Kirkpatrick, D.F. Millie, M.A. Moline, and C. Roesler. 1999. Optical monitoring and forecasting systems for harmful algal blooms: Possibility or pipedream? Journal of Phycology, 35:125-145.Google Scholar
  144. Schroeder, F. and W. Petersen. 2000. The Ferry-Box as a monitoring tool for marine waters: Concepts and technical solutions for European systems. http://coast.gkss.de/projects/ferrybox/ferrypages/pubs/Techno Ocean-manuscr.pdf.Google Scholar
  145. Shifrin, K. 1988. Physical optics of ocean water. American Institute of Physics, New York, 285 pp.Google Scholar
  146. Sibert, J.R., and J.L. Nielsen [Eds.]. 2001. Electronic Tagging and Tracking in Marine Fisheries, Proceedings of the Symposium on Tagging and Tracking Marine Fish With Electronic Devices, February 7-11, 2000, East-West Center, University of Hawaii, Honolulu, Hawaii. Kluwer Academic Publishers. 484 pp.Google Scholar
  147. Siegel, D.A., S.C. Doney, and J.A. Yoder. 2002. The North Atlantic spring phytoplankton bloom and Sverdrup's critical depth hypothesis. Science, 296:730-733.Google Scholar
  148. Siegel, D.A., S. Maritorena, N.B. Nelson, D.A. Hansell, and M. Lorenzi-Kayser. 2002. Global distribution and dynamics of colored dissolved and detrital organic materials. Journal of Geophysical Research, 107:3228-3242.Google Scholar
  149. Singhal, S.C. 2000. Science and Technology of Solid-Oxide Fuel Cells. MRS Bulletin, 25(3):16-21.Google Scholar
  150. Sivaprakasam, V., R.F. Shannon, Jr., C. Luo, P.G. Coble, J.R. Boehme, and D.K. Killinger. 2003.Google Scholar
  151. Development and initial calibration of a portable laser-induced fluorescence system used for in situ measurements of trace plastics and dissolved organic compounds in seawater and the Gulf of Mexico. Applied Optics, 42:6747-6757.Google Scholar
  152. Smart, J. 2000. World-wide Ocean Optics Database (WOOD). Oceanography, 13(3):70-74.Google Scholar
  153. Sosik, H.M., R.J. Olson, M.G. Neubert, A. Shalapyonok, and A.R. Solow. 2002. Time series observations of a phytoplankton community monitored with a new submersible flow cytometer. Proceedings of Ocean Optics XVI, 18-22 November, Santa Fe, NM, Office Naval Research, USA, CD-ROM.Google Scholar
  154. Stramski, D., E. Boss, D. Bogucki, and K. Voss. The role of seawater constituents in light backscattering in the ocean. Progress in Oceanography, Submitted.Google Scholar
  155. Stramski, D., R. A. Reynolds, M. Kahru, and B. G. Mitchell. 1999. Estimation of particulate organic carbon in the ocean from satellite remote sensing. Science, 285:239-242.Google Scholar
  156. Sullivan, J.M., Twardowski, M.S., Donaghay, P.L., and Freeman, S.A. 2004. Using scattering characteristics to discriminate particle types in U.S. coastal waters. Applied Optics, In Review.Google Scholar
  157. Sullivan, J.M., M.S. Twardowski, C. Moore, B. Rhodes, R. Zaneveld, R. Miller, and S. Freeman. 2004. Field and laboratory characterization of a new hyperspectral ac meter (the acs). ALSO/TOS Ocean Research Conference, 15-20 February, Honolulu, HA.Google Scholar
  158. Trees, C.C., D.K. Clark, R.R. Bidigare, M.E. Ondrusek, and J.L. Mueller. 2000. Accessory pigments versus chlorophyll a concentrations within the euphotic zone: A ubiquitous relationship. Limnology and Oceanography, 45(5):1130-1143.CrossRefGoogle Scholar
  159. Twardowski, M.S., E. Boss, J.B. Macdonald, W.S. Pegau, A.H. Barnard, and J.R.V. Zaneveld. 2001. A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in Case I and Case II waters. Journal of Geophysical Research, 106(C7):14,129-14,142.Google Scholar
  160. Twardowski, M.S., E. Boss, J.M. Sullivan, and P.L. Donaghay. 2004. Modeling spectral absorption by chromophoric dissolved organic matter (CDOM). Marine Chemistry, In Press.Google Scholar
  161. Twardowski, M.S., J.M. Sullivan, P.L. Donaghay, and J.R.V. Zaneveld. 1999. Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9. Journal of Atmospheric and Oceanic Technology, 16(12):691-707.Google Scholar
  162. Twardowski, M.S., J.R.V. Zaneveld, and C. Moore. 2002. A novel technique for determining beam attenuation compatible with a small sensor form factor and compact deployment platforms. Proceedings from Ocean Optics XVI, 18-22 November, Santa Fe, NM, Office Naval Research, USA, CD-ROM.Google Scholar
  163. Twardowski, M.S., J.R.V. Zaneveld, and C. Moore. 2003. Light attenuation meter using multiple path transmission and scattering. Provisional U.S. Patent App No. 453,739.Google Scholar
  164. Tyce, R., F. de Strobel, V. Grandi, and L. Gualdesi. 2000. Trawl-safe profiler development at SACLANT Centre for shallow water environmental assessment and read time modeling. Proceedings of Oceans ’00 MTS/IEEE, pg. 99-104.Google Scholar
  165. Van Leer, J., W. Duing, R. Erath, E. Kennelly, and A. Speidel. 1974. The Cyclesonde: an unattended vertical profiler for scalar and vector quantities in the upper ocean. Deep-Sea Research, 21:385-400.Google Scholar
  166. Vodacek, A., N.V. Blough, M.D. DeGrandpre, E.T. Peltzer, and R.K. Nelson. 1997. Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial inputs and photooxidation. Limnology and Oceanography, 42:674-686.CrossRefGoogle Scholar
  167. Voss, K.J., C.D. Mobley, L.K. Sundman, J.E. Ivey, and C.H. Mazel. 2003. The spectral upwelling radiance distribution in optically shallow waters. Limnology and Oceanography, 48:364-373.CrossRefGoogle Scholar
  168. Walsh, I.D., S.P. Chung, M.J. Richardson, and W.D. Gardner. 1995. The diel cycle in the integrated particle load in the equatorial Pacific: a comparison with primary production. Deep-Sea Research II, 42:465-477.Google Scholar
  169. Walsh, I.D., W.D. Gardner, and M.J. Richarson. 1992. Transmissometer profiles in the equatorial Pacific during the JGOFS EQPAC program: Estimates of primary production. Eos, 73:295.Google Scholar
  170. Waters, K., R.C. Smith, and M.R. Lewis. 1990. Avoiding ship-induced light-field perturbation in the determination of oceanic optical properties. Oceanography, 3:18-21.Google Scholar
  171. White, P., S. Honjo, T. Dickey, and H. Weller. 2002. Episodic primary production and export carbon fluxes in the Arabian Sea. Eos, 83(4), Ocean Sciences Meeting Supplement, Abstract OS12D-170.Google Scholar
  172. Wilson, S. 2000. Launching the ARGO armada. Oceanus, 42:17-19.Google Scholar
  173. Yentsch, C.S., and D.W. Menzel. 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Research, 10:221-231.Google Scholar
  174. Yu, X., T. Dickey, J. Bellingham, D. Manov, and K. Streitlien. 2002. The application of autonomous underwater vehicles for interdisciplinary measurements in Massachusetts and Cape Cod Bays. Continental Shelf Research, 22:2225-2245.Google Scholar
  175. Zaneveld, J.R.V. 1995. A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties. Journal of Geophysical Research, 100:13,135.Google Scholar
  176. Zaneveld, J.R.V., and W.S. Pegau. 2003. Robust underwater visibility parameter. Optics Express, 11(23):2997-3009.CrossRefGoogle Scholar
  177. Zaneveld, J.R.V., R. Bartz, and J.C. Kitchen. 1990. Reflective-tube absorption meter. Ocean Optics X, Proceedings of SPIE, 1302:124-136.Google Scholar
  178. Zaneveld, J.R.V., E. Boss, and C.M. Moore. 2001. A diver-operated optical and physical profiling system. Journal of Atmospheric and Oceanic Technology, 18:1421-1427.Google Scholar
  179. Zaneveld, J.R.V., J.C. Kitchen, and C.M. Moore. 1994. The scattering error correction of reflecting-tube absorption meters. Ocean Optics XII, Proceedings of SPIE, 2258:44-55.Google Scholar
  180. Zaneveld, J.R.V., J.C. Kitchen, A. Bricaud, and C.M. Moore. 1992. Analysis of in situ spectral absorption meter data. Ocean Optics XI, Proceedings of SPIE, 1750:187-200.Google Scholar
  181. Zaneveld, J.R.V., D.R. Roach, and H. Pak. 1974. The determination of the index of refraction distribution of oceanic particulates. Journal of Geophysical Research, 79:4091.Google Scholar
  182. Zibordi, G., S.B. Hooker, J.F. Berthon, and D. D’Alimonte. 2002. Autonomous above water radiance measurements from stable platforms. Journal of Atmospheric and Oceanic Technology, 19:808-819.Google Scholar
  183. Zhang, X., M.R. Lewis, M. Li, B. Johnson, and G. Korotaev. 2002. The volume scattering function of natural bubble populations. Limnology and Oceanography, 47:1273-1282.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Michael S. Twardowski
    • 1
  • Marlon R. Lewis
    • 2
  • Andrew H. Barnard
    • 3
  • J. Ronald V. Zaneveld
    • 4
  1. 1.WET Labs, Inc.USA
  2. 2.Dalhousie UniversityHalifaxCanada
  3. 3.WET Labs, Inc.PhilomathUSA
  4. 4.WET Labs, Inc.PhilomathUSA

Personalised recommendations